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1

Summary

This project sets out to identify and address the need for adaptive ascent guidance tech-
niques necessary for responsive launch. The required short response time and potential un-
availability of mission scenario specifics dictate that the conventional launch ascent guidance
technology, which relies heavily on pre-mission planning and requires significant lead time,
is simply incompatible to the needs in responsive launch. This report provides comprehen-
sive details to two recent advanced ascent guidance algorithms, tailored to endo-atmospheric
and exo-atmospheric optimal ascent, respectively. These algorithms generate optimal ascent
guidance commands based on the current state of the vehicle, the currently selected target-
ing condition, and available vehicle/environment modeling and wind information. Should
any in-flight changes occur in vehicle condition, vehicle health status, and mission objective
(such as call back and change of targeting condition), the guidance algorithms would be
able to adapt to the changes. Throughout the report, verification, validation and extensive
testing of the algorithms have been performed with many mission scenarios and a number of
different launch vehicle configurations, including winged reusable and conventional expand-
able, single-stage and multiple-stage, launch vehicles. This work has clearly demonstrated
that promising techniques and algorithms have reached a level where they could potentially
lead to fully automated closed-loop optimal ascent guidance from liftoff to orbital insertion.
It is strongly recommended that continuing efforts be made to further enhance, develop,
and mature these algorithms and techniques to pave the way to their eventual adaptation in
launch operations.

1



2

Introduction

2.1 State of Current Launch Ascent Guidance Tech-

nology

The Air Force’s interests in achieving operationally responsive launch and executing time-
critical, global-reach missions from space require far greater autonomy, flexibility, and capa-
bility of the guidance systems than currently exist for launch vehicles and entry spacecraft.
The driving motivation for this research is that the challenges for realizing responsive access
to and from space lie not only in hardware and operations, but also equally in software
and algorithms. Traditionally, launch and entry guidance and control (G&C) software and
parameters are designed for a specified mission, payload, and targeting condition. In ascent
guidance, the current technology employs open-loop ascent guidance during the atmospheric
portion of the flight. The guidance commands are generated on the ground based on the or-
bital insertion conditions, vehicle Modeling, and vehicle load and integrity constraints. Prior
to launch, the day-of-launch wind profile is used to update the ascent guidance commands
which are then uploaded into the launch vehicle. Such elaborate planning and updates are
essential for the open-loop guidance to ensure that the load limits will not be exceeded dur-
ing ascent in the inevitable presence of winds, the performance is optimal, and the targeting
conditions can be met. But this is a time-consuming and labor-intensive process, done well in
advance of the actual mission. In 2004 the Missile Defense Agency reported that it typically
take up to 6 months to update, re-validate, and check out the guidance and control software
and I-loads when targeting conditions and mission parameters change. See MDA04-103,
Research Project Call “Flexible, Rapid Launch Vehicle Control Software Generation and
Checkout”. The following is the excerpt:

Current inability to rapidly generate and test launch vehicle control software limits MDA’s
capability for responding to late-developing modifications to test requirements that affect bal-
listic missile target presentations. If modifications to test requirements involve changes to
target flight dynamics, trajectory, separation events, etc., software for launch vehicle con-
trol must be re-generated, verified, re-installed, and validated in the launch vehicle through
check-out procedures to include integrated testing. For multi-stage vehicles, typical times for
developing guidance, navigation and control (GN&C) software alone approach six months...
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In crewed launch missions, the lead time required for planning is even longer, up to two
years. Below is the personal communication from a senior engineer working in the Flight
Dynamics Department for the Space Shuttle, in response to the inquiry on Shuttle launch
planning related to GN&C and the man-power requirement:

The Space Shuttle flight design process can take anywhere from 9 months to 2 years,
depending on the mission. Flights that involve unique payloads are more complex, the most
recent example that I can think of would be STS-93 the deploy of the Chandra observatory.
That payload was very heavy with an aft CG that made the design of Ascent Abort trajec-
tories a challenge, particularly the glided side of the abort with full OMS pods, and a heavy
payload. Recently however, all the flights are going to the International Space Station which
has simplified the flight design process since all the flights now have similar weight and tra-
jectory constraints (51.6 deg. Inclination, ground up rendezvous with ISS, and medium sized
payloads due to limitations on payload mass to high inclination orbits). This has also helped
with the flight design for STS-300, which is a Launch on Need (LON) rescue flight to the
ISS. If the orbiter gets damaged and can not return, we would get out the STS-300 trajectory
products and refine them for the current situation and launch within 40 days.

On the days prior to launch a small group of people work to update, many of the ascent I-
loads (see below for a definition of I-Load) for the conditions on launch day, this is called the
”Day of Launch I-Load Update (DOLILU, pronounced ”doll ee lou”). Atmospheric conditions
(winds, and atmospheric density), and final estimates of propellant loading all factor into
these final adjustments to the Iloads. Items that get updated: First stage steering commands,
Throttle bucket, OMS Assist quantity, etc. DOLILU team 6-10 people.

The Flight Design and Dynamics department has about 350 employees that do everything
from simulation software modification and maintenance to the actual I-load design. Many of
these people are dedicated to areas that would not apply to other launch vehicles like Ascent
Aborts, Entry, and Orbit Operations. Additionally, there is a significant amount of effort
that goes into producing crew procedures, and many of the people in this department also
work on console during the mission. Also they are staffed to support a flight rate of 6-8
flights a year plus development of new programs.

2.2 Benefits and Objectives of the Research

Until the technical challenges in update and design of G&C algorithms and software on
a short notice are satisfactorily addressed, on-demand launch would not be realistic even
for a vehicle already on the launch pad or in orbit. Adaptive closed-loop ascent guidance
technology through the atmosphere is not only desirable, but may be necessary to truly
achieve on-demand responsive space launch.

Listed below are some of the major benefits of such an adaptive closed-loop ascent guid-
ance technology that are unmatched by the open-loop guidance, and directly tied to the Air
Force’s goal of responsive, reliable and affordable access to space:

• Significantly shortened pre-launch guidance preparation. With closed-loop ascent guid-
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ance, there is little or no need for off-line guidance planning and analysis. The day-
of-launch wind data can be incorporated into the guidance algorithm. Therefore, pre-
launch guidance command update is unnecessary. In fact, when and if in-flight means
for real-time wind speed measurement becomes available, the measured wind profile
could be directly fed to the closed-loop ascent guidance algorithm which in turn would
generate corresponding optimal guidance commands. In such a scenario the pre-launch
process of taking wind measurements, which typically takes hours, could even be elim-
inated.

• Operational flexibility. Closed-loop ascent guidance would be fully automated and
require no labor-intensive pre-mission analysis and re-planning whenever the mission
profile changes. Last-minute changes of the target orbit in time-critical missions could
be easily handled by the guidance system. Even in-flight change of target orbit could
be possible.

• Dramatically reduced reoccurring costs related to guidance. The same features of the
closed-loop ascent guidance that provide operational flexibility also result in greatly
reduced need for human intervention. Thus the operational costs related to ascent
guidance could be reduced to minimum.

• Fault Tolerance. A closed-loop ascent guidance system is capable of adapting to se-
vere off-nominal conditions. It could readily make use of vehicle health information,
accommodate recoverable system failures, and still successfully complete the mission.
An example is the failure of one engine (or multiple engines, as long as the remaining
engines can still put the vehicle into orbit). The closed-loop ascent guidance algorithm
could compute new optimal guidance commands based on the remaining thrust of the
vehicle, and guide the vehicle to fly a different (longer) trajectory to the target orbit.

In pursuit of the required technical advances in realizing adaptive ascent guidance, the
chief goals of this project are as follows:

1. Identify and evaluate advanced algorithms that may be the candidate for rapid space
launch mission planning and potentially closed-loop endo-atmospheric ascent guidance.
Develop new algorithm or enhancements to an existing algorithm where appropriate.

2. Develop robust, reliable and fast exo-atmospheric ascent guidance algorithm for opti-
mal ascent of multi-stage launch vehicles. The algorithm should allow full autonomous
guidance for optimal coasts between two burns/stages.

3. Integrate the endo- and exo-atmospheric optimal ascent guidance algorithms for com-
plete end-to-end launch operations.

4. Develop testing scenarios and evaluation metrics to test the ascent guidance algorithms;
validate the algorithms with other existing standard aerospace industry trajectory
software.

4



5. Demonstrate the applicability and versatility of the ascent guidance algorithms to
widely different launch vehicle configurations, including winged reusable launch vehicle
and axial-symmetric expendable launch vehicle.

This final report is organized in accordance with the above stated goals.
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3

Coordinate Systems

The need to define appropriate coordinate systems arises from two considerations. First,
there may be some particular coordinate system in which the position and velocity of the
flight vehicle “make sense”. For navigation we are concerned with position and velocity
with respect to the Earth, whereas for vehicle aerodynamic performance we need position
and velocity with respect to the atmosphere. Second, there are coordinate systems in which
the phenomena of interest are most naturally expressed. The direction of a rocket’s thrust
may often be considered fixed with respect to the body of the vehicle. There are three

coordinate systems used in this report – Earth Centered Inertial coordinate system (ECI),
guidance coordinate system (or launch plumbline frame), and vehicle body frame. This
section provides descriptions of above three coordinate systems and of the algorithms used
to transform quantities between different systems.

3.1 Earth Centered Inertial Coordinate System XIYIZI

As its name suggests this coordinate system has its origin at the center of the Earth. The
z-axis ZI is parallel to the Earth’s rotation axis (positive to the North). It is assumed that
the x-axis XI points toward the intersection of the Equator and the Greenwich Meridian
at the time of launch (this is a simplification that can be easily removed). The y-axis YI

completes the right-hand coordinate system. Thus it is convenient for specifying the location
of ground stations and ground-based experiments as these are fixed quantities in the ECI
system.

When ECI coordinates are expressed in spherical form, the latitude component is identical
to what is termed geocentric latitude by astronomers and geographers. However, note that
this is different to the system of geodetic latitude used in normal map-making. The geodetic
latitude at any location is the angle between the equatorial plane and the local normal to
the Earth’s surface. In general that normal is not parallel to a radius vector because the
shape of the Earth is an oblate spheroid and not a sphere.
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Figure 1: Earth centered inertial and launch plumbline coordinate systems

3.2 Launch Guidance (Plumbline) System XPYPZP

The guidance system is an inertial system, which is also called the inertial launch plumbline
coordinate system whose origin is at the center of the Earth. The x-axis XP is defined from
the center of the Earth, parallel to the gravity direction at the launch site and positive up
(the same as XG in Fig. 1). The z-axis ZP is pointing downrange along the launch azimuth
direction and the y-axis YP completes the right-hand system. The XPYPZP frame has its
axes parallel (or coincide in the case of the x-axis) with those of the XGYGZG frame in Fig. 1,
except that the latter has its origin at the launch site. The longitude and geocentric latitude
of the launch site is defined by (Θ,Φc). The launch azimuth Az for an ascending orbit is
defined by

Az = sin−1

(
cos i

cos Φc

)
for ascending orbit

Az =
π

2
+ sin−1

(
cos i

cos Φc

)
for descending orbit

(1)

where i is the target orbital inclination.
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Figure 2: Geodetic and geocentric latitude

Note that geocentric latitude Φc is used instead of geodetic latitude Φd. The geocentric
latitude of a point is the angle between the equatorial plane and a ray through the point
from the Earth’s center. The geodetic latitude is the angle between the local zenith and the
equatorial plane. Due to the Earth’s oblateness, geodetic latitudes (the most common form
of Earth location) are slightly greater than geocentric latitudes except at the equator and
poles where they are identical. The relationship between Φc and Φd is given by

tan Φc = (1 − e2) tanΦd (2)

where e = 0.0818191 is the eccentricity of the Earth.

3.3 North-East-Down (NED) System

This is an inertial system with the origin at the launch site at the launch time. The x-axis
points to the North, the y-axis to the local East, and the z-axis completes a right-hand
system (down).
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Figure 3: Vehicle body coordinate system showing Euler angles

3.4 Vehicle Body Coordinate System XBYBZB

The vehicle body coordinate system is fixed to the vehicle as shown in Fig. 3. The x-axis XB

coincides with the vehicle body longitudinal axis. The z-axis ZB lies in the plane of symmetry
(or some reference plane in the case of asymmetric shapes), pointing “downward”. The y-axis
YB is perpendicular to these axes forming a right-handed coordinate system. Positive YB,
thus points to the right when looking forward. The origin is generally taken at the vehicle
center of gravity or at a fixed reference location relative to the geometry.

The Euler angles are also shown in Fig. 3. The yaw, pitch and roll angles are denoted by
θ, ψ, and φ, respectively.

3.5 Coordinate Transformation

Let TEP be the coordinate transformation matrix from ECI coordinate system to the plumbline
frame.

TEP =

[
cos Θ cos Φ sin Θ cosΦ sin Φ

− sin Θ cos Az + cos Θ sin Φ sin Az cos Θ cos Az + sin Θ sin Φ sin Az − cos Φ sin Az

− sin Θ sin Az − cosΘ sin Φ cos Az cos Θ sin Az − sin Θ sin Φ cos Az cosΦ cos Az

]
(3)

9



where Θ is the launch site longitude, Φ is the launch site geocentric latitude, and Az is the
launch azimuth (see Equation 1). Using TEP , we can easily do the coordinate transformation
from ECI system to plumbline frame, and vice versa. Using rotation sequence of pitch-yaw-

roll (also referred to as 2-3-1 rotation), the coordinate transformation matrix TBP , from body
frame to plumbline frame is

TBP =

[
cos θ cosψ sin θ sinφ− cos θ sinψ cosφ sin θ cosφ+ cos θ sinψ sinφ

sinψ cosψ cosφ − cosψ sinφ
− sin θ cosψ cos θ sinφ+ sin θ sinψ cosφ cos θ cosφ− sin θ sinψ sinφ

]
(4)

where θ, ψ, φ are the three Euler angles - pitch, yaw, and roll, respectively. The three
columns of TBP , are indeed the three unit vectors of the body axes 1b, 1y, 1z in plumbline
frame. Therefore, the unit vector of the body x-axis is given by

1b =

⎡
⎣ cos θ cosψ

sinψ
− sin θ cosψ

⎤
⎦ (5)

The unit vector of the body y-axis in plumbline frame is defined as

1y =

⎡
⎣ sin θ sinφ− cos θ sinψ cos φ

cosψ cosφ
cos θ sin φ+ sin θ sinψ cosφ

⎤
⎦ (6)

The body z-axis can be determined by imposing the right-hand rule

1z = 1b × 1y = −1n (7)

Once we find the three body axes in plumbline frame, the Euler angles could be easily
calculated using the following relationship.

θ = − tan−1

(
1bz

1bx

)

ψ = tan−1

(
1by

1bx cos θ − 1bz sin θ

)

φ = − tan−1

(
1zy

1yy

) (8)

where, 1bx, 1by and 1bz are the three components of the unit vector 1b. And 1yy, 1zy, are the
y-components of unit vector 1y and 1z respectively.
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4

Endo-Atmospheric Closed-Loop
Ascent Guidance

4.1 Introduction

The ascent guidance system of a rocket-powered launch vehicle determines the attitude
commands and, when applicable, engine throttle command during the ascent of the vehicle.
It is well known that whether or not the ascent trajectory is optimal can have a significant
impact on propellant usage for a given payload, or on payload weight for the same gross
vehicle weight. Consequently ascent guidance commands are usually optimized in some
fashion. In fact, ascent guidance is one of the most notable engineering fields where optimal
control theory has found routine applications. Successful vacuum rocket guidance software
based on the optimal control theory includes the Iterative Guidance Mode (IGM) for the
Saturn rockets,1 and the Powered Explicit Guidance (PEG) for the Space Shuttle.2 These
algorithms solve the optimal vacuum powered flight problem on-board in each guidance
update cycle using the current condition as the initial condition of the solution. Therefore
the guidance strategy in effect is closed-loop.

One of the major open challenges of ascent guidance lies in the endo-atmospheric por-
tion of the flight. The presence of the aerodynamic forces, loads and winds significantly
complicates the optimal ascent problem, making the solution process much more difficult to
converge reliably and sufficiently fast for on-board applications. For these reasons typical
current ascent guidance inside the atmosphere is open-loop.3 In such an approach, the guid-
ance commands are generated off-line, updated with the day-of-launch wind data prior to
launch, and loaded into the launch vehicle for use during the ascent through the atmosphere.
While very successful in nominal ascent guidance, the open-loop approach inherently lacks
the adaptive capability to handle contingencies and aborts, even with extensive off-line plan-
ning at great costs. Open-loop guidance also does not possess the robustness necessary to
cope with significant off-nominal conditions and system Modeling uncertainty, especially for
new launch vehicles for which little or no flight data is available. The required re-planning
and re-generation of the open-loop ascent guidance commands whenever any mission or
system parameters change are costly in both developmental and operational phases of the
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launch vehicle.

A closed-loop ascent guidance algorithm could address all of the above deficiencies of
open-loop guidance. The search for a feasible algorithm to solve the optimal control prob-
lem on-board for closed-loop atmospheric ascent guidance dates back to the 1960s. The work
by Brown and Johnson represents one of the earliest attempts in this direction.4 In a series
of recent work5–7 that has stimulated renewed interest in this area, Calise et al develop a
hybrid approach to the problem. In this approach the analytical solution of the optimal
vacuum flight and numerical collocation for atmospheric portion are combined. The vacuum
solution serves as the initial guess for the atmospheric flight, and a homotopy method is
used to gradually phase in the aerodynamic terms and path constraint-related terms. Ref-
erences8–11 contain further recent enhancements and more development in endo-atmospheric
ascent guidance.

This part of the report describes the endo-atmospheric guidance algorithm used in this
work.12 The main components of this part of the report are:

• Comprehensive treatment to the 3-dimensional optimal ascent problem subject to
the common path constraints and orbital insertion conditions, and techniques to ad-
dress a number of on-board implementation issues, some of which are unique to non-
axisymmetric launch vehicles (such as a lifting-entry reusable launch vehicle);

• Demonstration of the suitability for the solution of the ascent guidance problem by
a classical finite-difference approach which can be interpreted as a special form of
collocation, but is conceptually simpler and easier to implement;

• Illustration of the capability and feasibility of on-board closed-loop ascent guidance by
a series of carefully designed tests.

4.2 Ascent Trajectory Dynamics

The equations of motion for a rocket-powered launch vehicle, in a central gravitational field,
expressed in an inertial coordinate system are as follows:

ṙ = V (1)

V̇ = g(r) +
T1b

m(t)
+

A

m(t)
+

N

m(t)
(2)

ṁ = −ηTvac

g0Isp
(3)

where r and V ∈ R3 are the inertial position and velocity vectors; g the gravitational
acceleration; Tvac the full vacuum thrust magnitude; η > 0 is the engine throttle; T the
current thrust magnitude including effects of throttle modulation and thrust loss due to
back pressure. In this formulation the total engine thrust is assumed to be aligned with the
body longitudinal axis, and is not gimbaled independently. The vectors A and N are the
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aerodynamic forces in the body longitudinal and normal direction, respectively; 1b the unit
vector defining the launch vehicle body longitudinal axis; m(t) is the mass of the launch
vehicle at the current time t. The specific impulse of the engine is Isp and g0 represents the
gravitational acceleration magnitude on the surface of the Earth.

4.3 Definition of Vehicle Body Axis Frame

The definition of vehicle body axis frame xbybzb depends on how we want the vehicle to fly.
We can choose to construct 1z (therefore the symmetric plane) so that the vehicle flies a
zero degree (“heads-up”) or 180 degree (“heads-down”) bank angle trajectory.

1y =
1b × r

‖1b × r‖ (4)

The Shuttle adopts this heads-down option. This heads-down position assists in communica-
tions with the ground and allows instruments within the cargo bay to be pointed back toward
the Earth, which is required for many of the experiments carried within the bay. There is
probably also some psychological benefit to the crew since they are given spectacular views
of home rather than staring into the cold darkness of the great void of space.

We can also construct 1z so that the vehicle flies at zero sideslip angle.13 The definition
of vehicle body axis frame in this study follows this zero-sideslip formulation. In this formu-
lation, the launch vehicle symmetric plane is assumed to be always the plane formed by the
body-axis 1b and the Earth relative velocity vector V r. Thus the sideslip angle remains zero.
Note that such a body-frame orientation necessitates a roll angle about the longitudinal axis
1b to null the sideslip in the presence of cross winds. Physically, this is the so-called “fly into
the wind” maneuver as in the case of Space Shuttle ascent.

Thus the unit vector of the body x-axis is the same as 1b; the unit vector of the body
y-axis is defined as

1y =
1Vr × 1b

‖1Vr × 1b‖ (5)

where, 1Vr = V r/Vr is the unit vector in the direction of V r. The unit vector of the body
z-axis completes the right-hand system 1z = 1b × 1y. Denote the body-normal unit vector
by 1n = −1z. Then

1n = 1b × (1b × V r)

‖1b × V r‖ ( α > 0 ) (6)

where, V r = V − ω̄e × r = Earth relative velocity; ω̄e = Earth rotation vector in the
plumbline launch frame. Note in this formulation, the sideslip β ≡ 0. Figure 4 shows this
configuration. Clearly,

cosα = 1T
b 1Vr or |sinα| = ‖1Vr × 1b‖ (7)

To avoid an instantaneous 180-degree rotation of 1n, when α crosses α = 0, 1n should be
defined to be

1n = 1b × (V r × 1b)

‖1b × V r‖ ( α < 0 ) (8)
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Figure 4: Launch vehicle body frame with relative velocity

The following expression for 1y is preferred to Equation (5)

1y = 1Vr × 1b/ sinα (9)

The reason is that this definition is valid for both α > 0 and α < 0 without causing the
instantaneous 180-degree rotation in 1y, when 1Vr and 1b cross over each other (α changes
sign).

4.4 Nondimensionalization

For better numerical conditioning, the following nondimensionalization is used:

• The distances are normalized by R0, the radius of the Earth at equator;

• Time is normalize by
√
R0/g0;

• The velocities are normalized by
√
R0g0, the circular velocity around the Earth at R0

The gravity is Modeled by the Newtonian central gravity field. With some abuse of notation,
we use the same names hereafter for the dimensionless variables. Under the zero-sideslip
formulation as shown in Fig. 4, the dimensionless equations of motion from Eqs (1) and (2)
become ⎧⎨

⎩
r′ = V

V ′ = − 1

r3
r + (T − A)1b +N1n

(10)
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where the differentiation is with respect to the dimensionless time. Now A and N are the
aerodynamic accelerations in g0 in the body longitudinal and normal direction respectively,
and T the magnitude of the thrust acceleration in g0. The magnitudes of the dimensionless
aerodynamic and thrust accelerations are given by

A =
R0

2m(t)
ρ(r)V 2

r SrefCA(Ma, α) (11)

N =
R0

2m(t)
ρ(r)V 2

r SrefCN(Ma, α) (12)

T = [ηTvac + ΔT (r)]/m(t)g0 (13)

where, ρ(r) is the dimensional atmospheric density at radius r; Vr is the magnitude of the
dimensionless Earth-relative velocity

V r = V − ω̄E × r − V w (14)

where V w is the wind velocity vector and ω̄E is the Earth angular rotation rate vector. The
axial and normal aerodynamic coefficients CA and CN are functions of Mach number Ma and
angle of attack α. They are expressed in analytical forms by curving-fitting the tabulated
data. The thrust loss ΔT due to the back pressure is a function of altitude through the
dependence of ΔT on ambient pressure. Note that the mass flow rate will be reduced by the
same percentage as the thrust when the thrust is throttled down.

4.5 Guidance Problem and Constraints

The current conditions r0 and V 0 are assumed to be known. The ascent guidance problem
is to find the desired body-axis orientation 1b(t) at each instant which determines the thrust
direction and aerodynamic forces during the atmospheric portion of the ascent. The engine
throttle η will also need to be determined for enforcing some of the path constraints, as will
be discussed later. The final conditions will be the engine-cutoff conditions which ensure
insertion into the required orbit. These orbital insertion conditions can in general be written
as k, 0 < k ≤ 6, algebraic end conditions

Ψ(r(tf ),V (tf )) = 0, Ψ ∈ Rk (15)

Specifics on (15) will also be discussed later. In addition, there will be path constraints on
the trajectory for safety and vehicle integrity. The three most common path constraints in
ascent guidance will be considered: the product of dynamic pressure and α, axial thrust
acceleration, and dynamic pressure

|qα| ≤ Qα (16)

T ≤ Tmax (17)

q ≤ qmax (18)

where q = ρV 2
r /2. The constants Qα, Tmax, and qmax are the respective limits for each of the

corresponding constraints. Another common path constraint on |qβ|, the product of dynamic
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pressure and sideslip angle, is not included here because in our zero-sideslip formulation, this
quantity usually already has small magnitude. The constraints on normal acceleration |N |
and angle of attack α, if necessary, can be handled in the same way as constraint (16) is
handled. Thus they will not be discussed separately. Collectively, the above path constraints
may be written in a compact form

S(r,V , 1b, t) ≤ 0 (19)

4.6 Optimal Control Problem and Necessary Condi-

tions

The mathematical tool used to find the optimal ascent guidance commands is the optimal
control theory. In this setting a performance index is defined. The minimization of this
performance index is usually tied in one way or the other to the minimization of propellant
usage. Denote the performance index by

J = φ(rf ,V f , tf) (20)

where tf is the engine cutoff time and rf and V f are the position and inertial velocity of
the launch vehicle at tf . The functional form of J is best selected to be most convenient for
a particular formulation of the optimal ascent problem. Typical choices are J = tf , for the
minimum-time problem, or J = 1/rf − V 2

f , for the maximum-energy problem with a fixed
tf .

Most recently it has been shown that in general no singular optimal thrust programs exist
in atmospheric ascent.8 Therefore the optimal throttle is bang-bang type. In this report the
engine throttle η is treated as a given (possibly time-varying) input. Thus the variation of
the mass m(t) is considered a prescribed function of time, not a state. In order to focus
on the presentation of the essentials of the approach, the path constraints Eqs. (16-18) will
be added later. With these assumptions and noting the constraint 1T

b 1b = 1, we define the
Hamiltonian

H = pT
r V + pT

V

[
− 1

r3
r + (T − A)1b +N1n

]
+ μ(1T

b 1b − 1) (21)

where μ is a scalar multiplier, and pr and pV ∈ R3 are the so-called costate vectors. Let
the asterisk signify the optimal values of the relevant variables. The standard necessary
conditions for the optimal solution are14 (using the notion of Maximum Principle)

p′
r = −∂H

∂r
(22)

p′
V = −∂H

∂V
(23)

H(pr,pV , r
∗,V ∗, 1∗

b , t) = max
1b

H(pr,pV , r
∗,V ∗, 1b, t) (24)
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The derivation of the expressions of the costate equations (22-23) is quite involved. The
detailed equations are provided in Appendix A. The optimal solution must also satisfy the
terminal constraints (15) and the following transversality conditions

pr(tf ) = −∂φ(rf ,V f , tf)

∂rf

+

(
∂Ψ

∂rf

)T

ν (25)

pV (tf ) = −∂φ(rf ,V f , tf)

∂V f

+

(
∂Ψ

∂V f

)T

ν (26)

H(pr,pV , r
∗,V ∗, 1∗

b , t)|tf =
∂φ

∂tf
(27)

where ν ∈ Rk is a constant multiplier vector. The last condition (27) is for the cases where
the final time tf is not specified. The first two conditions (25-26) can be combined to
eliminate the unknown vector ν and yield 6 − k independent conditions involving only final
costate pf = (pT

rf
pT

Vf
)T and final state xf = (rT

f V T
f )T . The general approach will be first

finding the 6 − k linear independent solutions of the homogeneous system(
∂Ψ

∂xf

)
ξ = 0

Let ξi(xf) ∈ R6, i = 1, ..., 6 − k be such solutions. Note that ξi’s are functions of xf .
Transversality conditions (25) and (26) are then equivalent to(

pf +
∂φ

∂xf

)T

ξi
Δ
= Γi(pf ,xf) = 0, i = 1, . . . , 6 − k. (28)

The k terminal constraints (15) plus the above 6 − k conditions constitute the 6 terminal
conditions for the optimal control problem. For a given problem, the conditions in (28) can
often times be obtained more conveniently by using the terminal constraints (15) and taking
dot products of Eqs. (25) and (26) with appropriate vectors related to the final state xf .
Examples will be given later.

The optimality condition (24) necessitates

∂H

∂1b
= 0 (29)

Define s = ‖1b × 1Vr‖. The expansion of the optimality condition ∂H/∂1b = 0 requires,
among other relationships, the following

∂α

1b
=

cosα

sinα
1b − 1

sinα
1Vr (30)

∂1n

∂1b
=

1

s

{
(1T

Vr
1b)I3 + 1b1

T
Vr

+
1

s2

[
(1T

Vr
1b)1b − 1Vr

] [
(1T

Vr
1b)1Vr − 1b

]T}
(31)

where I3 is a 3 × 3 identity matrix. Let

a = pV [(1T
Vr

1b)(1
T
pV

1b) − (1T
Vr

1pV
)]/s

b = −pVAα + aNα
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where 1pV
= pV /pV , Aα = ∂A/∂α and Nα = ∂N/∂α. When evaluating ∂H/∂1b, keep in

mind that both A and N are functions of α, therefore functions of 1b. Carrying out the
differentiations and collecting terms, we eventually have

1∗
b =

1

(2μ+ b/ tanα− aN/s2)

{− [
T −A +N(1T

Vr
1∗

b)/s
]
pV

+
[
b/ sinα−NpV (1T

pV
1∗

b)/s− aN(1T
Vr

1∗
b)/s

2
]
1Vr

}
Δ
= c1(x,p, 1

∗
b)pV + c2(x,p, 1

∗
b)V r (32)

where c1 and c2 are scalar functions of the state, costate, and 1∗
b . Hence we conclude that

the optimal body-axis lies in the plane formed by the primer vector pV and relative velocity
vector V r. A similar conclusion is reached by using a geometric approach in an earlier
work by Vinh,15 where the thrust direction and aerodynamic force vector are assumed to be
independent controls.

The condition (32) suggests that the search for the optimal body-axis orientation can
be reduced to a one-dimensional search in the plane of pV and V r.

7 Let Φ be the angle
between the vectors pV and V r. At each instant with given state and costate, Φ is known.
Denote by 1pr and 1pV

the unit vectors in the directions of pr and pV , respectively. Notice
that 1T

b 1pV
= cos(Φ − α) and 1T

n1pV
= sin(Φ − α). Using these two relationships in the

expression of H in Eq. (21), it is clear that maximizing H with respect to 1b is equivalent
to ∂H/∂α = 0, which in turn results in7

tan(Φ − α)(T −A+Nα) − (Aα +N) = 0 (33)

Since A, N , Aα and Nα are generally functions of α, the above equation needs to be solved
numerically for α.

The cases for canted or gimbaled thrust vector are not included in above formulation.
But the same conclusion can be reached in a similar fashion as in above analysis. This result
is an extension of the well-known primer vector theory on optimal rocket flight in vacuum.31

Once α is found from Eq. (33), c1 and c2 in Eq. (32) can be solved in terms of α and Φ
by taking the dot product of (32) with 1pV

and with 1Vr

1∗
b =

(
sinα

sin Φ

)
1pV

+

[
sin(Φ − α)

sin Φ

]
1Vr (34)

Note that as the atmospheric density decreases (approaching vacuum flight), the aerody-
namic terms diminish, and α → Φ from Eq. (33) . The optimal body axis in (34) and
therefore the optimal thrust vector become aligned with the primer vector pV .31

4.7 Adding the Path Constraints

When inequality constraints (19) are added to the problem, the costate equations (22-23)
will have additional terms related to the constraints, and the condition to determine the
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controls will change. We shall discuss each of the three constraints in Eqs. (16-18) in the
following.

Constraint S1 = qα−Qα ≤ 0

Without loss of generality the absolute sign in Eq. (16) is removed for the simplicity
of discussion. This constraint is a zeroth order constraint in that the control 1b appears
explicitly (through α) in the constraint itself. In such a case, the costate equations take the
form of

p′ = −∂H
∂x

− λqα
∂S1

∂x
(35)

where the multiplier λqα = 0 and the problem is the same as in the preceding sections when
S1 < 0. When S1 = 0, λqα satisfies the condition

∂H

∂1b
+ λqα

∂S1

∂1b
= 0 (36)

Using condition (30) we have

∂S1

∂1b
= q

∂α

1b
= q

(
cosα

sinα
1b − 1

sinα
1Vr

)
(37)

Using condition (36) and the result in Eq. (37) and following the steps similar to those in
Section 3.6, we can show that the optimal body axis 1∗

b is again in the plane of pV and V r

as before. Note that this conclusion cannot be assumed to be always true for any inequality
constraints, and must be verified for each case. In this case condition (36) is equivalent to

∂H

∂α
+ λqα

∂S1

∂α
= 0 (38)

Or,

λqα = −∂H/∂α
q

(39)

where
∂H

∂α
= pV [(T − A+Nα) sin(Φ − α) − (Aα +N) cos(Φ − α)] (40)

In a finite interval where S1 = 0, the angle of attack is directly obtained from

α = Qα/q (41)

The direction of the body axis 1b is determined by α in the plane of pV and V r by Eq. (34)
as before. The multiplier λqα is calculated from Eq. (39) and used in the costate equation
(16) to propagate the costate.

Constraint S2 = T − Tmax ≤ 0

Typically for the usual values of Tmax, this constraint only becomes active after the
trajectory is outside the dense atmosphere where ΔT (r) ≈ 0. Thus whether or not and
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when this constraint will become active are uniquely determined by the prescribed engine
throttle, not influenced by any of the trajectory state variables and the control 1b. In this
sense it is not a state or control constraint (recall that the engine throttle is regarded as a
prescribed input). Once S2 = 0, the engine throttle will be adjusted according to

η =
Tmaxm(t)g0

Tvac
(42)

to keep S2=0. The costate equations are the same as in (22-23), and the optimal body axis
1∗

b is found in Eq. (34) as before.

Constraint S3 = q − qmax ≤ 0

This is a first-order constraint because the control 1b appears in the first-order derivative
of S3. Recall that q = ρ(r)V 2

r /2, and V r is defined in Eq. (14). So

S ′
3 =

1

2r
ρrV

2
r rT V + ρV T

r V ′
r (43)

where ρr = ∂ρ/∂r and
V ′

r = V ′ − ω̄E × V − V ′
w (44)

Suppose that S3 = 0 in a finite interval [t1, t2]. The costate equations in this interval are

p′ = −∂H
∂x

− λq
∂S ′

3

∂x
(45)

The corresponding optimality condition is

∂H

∂1b

+ λq
∂S ′

3

∂1b

= 0 (46)

The costate will have a jump at t1

p(t+1 ) = p(t−1 ) + κ
∂S3

∂x
(47)

where κ is a constant multiplier. It can be shown that

∂S ′
3

∂1b
= d1(x, 1b)V r + d2(x, 1b)1b (48)

where d1 and d2 are two scalar functions. Therefore using the derivations in Section 3.6, we
can show that condition (46) still results in that the optimal body axis 1∗

b lies in the plane
of pV and V r. Conditions similar to Eqs. (38) and (39) can now be readily derived. And
the condition S ′

3 = 0 provides the equation for the solution of α in [t1, t2].
With the above equations laid out, the optimal solution in principle can be found nu-

merically. But two implementation issues arise: 1) the engine throttle is known to be more
effective in regulating the dynamic pressure by slowing down the increase of the velocity; 2)
the jump condition Eq. (47) makes it necessary to accurately estimate the time t1 in the
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solution process for it to converge quickly. The second issue may not be a problem if only
nominal ascent is considered, because a good estimate of t1 can be obtained off-line if the
vehicle modeling, day-of-launch wind data, and mission parameters are well known. But a
chief potential advantage of closed-loop ascent guidance is for autonomous abort guidance.
In aborts, the conditions are inevitably well off nominal, and any off-line estimates of t1
could be no better than an arbitrary guess.

In an on-board environment, the entire ascent trajectory x(·), along with the control
1b(·) and throttle η(·), is generated from the current condition x(t) to the target condition
in each guidance cycle. The current attitude commands and throttle command are from
1b(t) and η(t), the first data point in the guidance solution. To address the above issues and
keep the algorithms reasonably simple and robust for on-board guidance purposes, we adopt
the following approach: The optimal body-axes in the guidance solution are still determined
as in Sections 3.5 with the prescribed throttle where no constraint on the dynamics pressure
is considered. This is justified because we conclude that the optimal body axis remains in
the plane of pV and V r even when q ≤ qmax is active. Next, we consider the first-order
derivative of q at t that can obtained as

q′(t) = aq(x, 1b)η(t) + bq(x, 1b) (49)

where η is the current engine throttle, and the expressions for aq and bq are readily available
when one makes the substitutions. Let δ > 0 be a time-increment. A first-order approxima-
tion of q(t+ δ) is

q(t+ δ) ≈ q(t) + q′(t)δ = q(t) + [aq(x, 1b)η(t) + bq(x, 1b)]δ (50)

When deciding the throttle command at the current time t, we require that q(t+ δ) ≤ qmax.
Using the above approximation for q(t+ δ) in this condition, we have

η(t) ≤ qmax − q(t) − bqδ

aqδ
Δ
= ηq (51)

Most likely η will have a minimum allowable setting ηmin > 0 during engine-on period. Let
ηprb > ηmin be the otherwise prescribed throttle setting (e.g., ηmax). The current engine
throttle command is determined by

η =

⎧⎨
⎩

ηprb, if ηq > ηprb

ηq, if ηmin ≤ ηq ≤ ηprb

ηmin, if ηq < ηmin

(52)

The last case in (52) would be when the dynamic pressure constraint cannot be met by
lowering the engine throttle within the allowable range, which is an unlikely event.

Remarks:

1. Since a first-order expansion (50) is used in deriving (51), one may be tempted to
suspect that the enforcement of q ≤ qmax by this approach is acceptable only when
δ is small. On the contrary, it can be shown that as long as the trajectory begins in
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the region where q < qmax, the throttle given by (52) guarantees strict satisfaction of
the constraint q ≤ qmax for any δ > 0. It turns out that when q → qmax, η = ηq

drives q′ → 0 for any δ > 0, and whenever q = qmax, q
′ = 0. A detailed discussion of

strict enforcement of first-order constraints by this type of technique can be found in
a previous work on constrained nonlinear control systems.16

2. Because of the above property, an appropriate value δ can always be chosen for a given
vehicle to eliminate the undesirable jitters in throttle command when the dynamic
pressure constraint is active, and still accurately enforce the constraint. Typically there
is a minimum value of δ above which a δ will render the engine throttle commands
from (52) to be sufficiently smooth.

3. The benefits of this approach for enforcing the constraint q ≤ qmax are its simplicity,
robustness, and effectiveness. And there is no need for the estimate of the instant
t1 when the constraint becomes active. It is closed-loop in nature, unlike the open-
loop“throttle bucket” approach currently in use for the Shuttle. It should be pointed
out, however, that the adjustment of the throttle is done outside the solution process
of the optimal control problem. Thus the guidance solution in the period when the
dynamic pressure constraint is active is not strictly optimal in theory (although the
body axis is still determined according to the necessary conditions of the optimal
control problem). But this period is always relatively short compared to the total
burn time. The impact of this short deviation from the theoretical optimal conditions
on performance appears to be negligible. We have used two different state-of-the-art
trajectory optimization software packages17, 18 to cross-check the performance of the
trajectories obtained herein. The differences in terms of propellant consumption have
been minimal (See numerical results later). A similar observation is also made by
Corvin19 on the effects of adjusting throttle to control dynamic pressure.
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5

Numerical Method

5.1 Finite Difference Approach

Finite difference is one of several classical techniques used for two-point-boundary-value
problems (TPBVPs).20 For ascent guidance applications, we have found that this classical
approach is well suited for the problem.

After substituting the control 1b of Eq. (34) in the equations of motion and costate
equations, and denoting y = (xT pT )T ∈ R2n with n = 6, the complete TPBVP is now

y′ = f(t,y) (1)

B0(y0) = 0 (2)

Bf(yf ) = 0 (3)

where B0 = x(t0)−x0 in our problem represents the given initial condition , and Bf(yf) = 0
are the 6 final conditions from combining the orbital insertion conditions Eq. (15) and the
transversality conditions (28). Let tf be the specified final time. The TPBVP is to find a
solution y(t) that satisfies the differential equations (1) and boundary conditions (2-3). To
find the solution, divide the time interval tf − t0 into M subintervals of the same length
h = (tf − t0)/M . Let yk = y(t0 + kh) be the value of the solution at the node tk = t0 + kh,
k = 0, . . . ,M . At the middle point between tk−1 and tk, denoted by tk−1/2 = tk − h/2, the
differential equations (1) are approximated by central finite difference:

1

h
(yk − yk−1) = f

(
tk−1/2,

yk − yk−1

2

)
(4)

Or equivalently, yk and yk−1 are constrained by the equation

Ek(yk,yk−1)
Δ
= yk − yk−1 − hf

(
tk−1/2,

yk − yk−1

2

)
= 0, k = 1, . . . ,M − 1. (5)

In addition, the boundary conditions are denoted by

E0(y0) = B0(y0) = 0 (6)

EM(yM) = Bf (yf) = 0 (7)
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Treat Y = (yT
0 yT

1 . . .y
T
M)T ∈ R2n(M+1) as the unknowns. The same number of equations

are
E(Y ) = 0 (8)

where E = (ET
0 ET

1 . . .E
T
M)T . Now the problem becomes a root-finding problem for a system

of 2n(M+1) nonlinear algebraic equations (8). It has been rigorously established that under
certain conditions on smoothness and the boundary conditions, the following holds true20

1. Each of the original TPBVP and the finite difference problem has a unique solution;

2. The solution of the above finite difference problem yk is a second-order approximation
to the solution of the TPBVP y∗(t) at each tk, i.e.,

‖y∗(tk) − yk‖ = O(h2), k = 1, 2, . . . ,M (9)

where limh→0 O(h2)/h2 <∞.

For ascent guidance applications, since the time-to-go tf − t0 is decreasing, the accuracy
of the finite difference solution will be higher and higher as h becomes smaller even for a
small to moderate number of nodes.

For problems with free final time tf , see Section 5.1 for a treatment.

5.2 Modified Newton Algorithm

A modified Newton method21 is chosen as the algorithm for solving the problem (8) for its
balance between complexity and effectiveness. Starting from an initial guess Y 0 (which may
be reliably and quickly generated from vacuum solution using the algorithm to be described
in Section 6), the search direction dj in the j-th iteration is determined by solving the linear
algebraic equations [

∂E(Y j−1)

∂Y

]
dj = −E(Y j−1), j = 1, 2, . . . (10)

Next, determine the step size parameter σj by the following criterion

σj = max
0≤i

{ 1

2i

∣∣∣ ET (Y j−1 +
1

2i
dj)E(Y j−1 +

1

2i
dj) < ET (Yj−1)E(Yj−1)

}
(11)

In other words, starting from σj = 1, σj is halved repeatedly if necessary until the above
condition is satisfied. Then the update is given by

Y j = Y j−1 + σjdj , 0 < σj ≤ 1, (12)

This choice of the search step size ensures that the sequence {‖E(Y j)‖} is monotonically
decreasing. Convergence is achieved when ‖E(Y j)‖ is no greater than a preselected toler-
ance. The possible additional function evaluations required in checking the above step size
condition pose negligible computational burden because function evaluations are not expen-
sive in this setting. The result on the other hand is a much more robust algorithm, especially
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when the initial guesses are not close to the final solution. The step size selection (11) is a
deciding factor for the success of the finite difference approach in solving the optimal ascent
problem.

The evaluation of the Jacobian ∂E/∂Y can certainly be done analytically. But we
believe that simple numerical finite differencing is more advantageous in this case. This is
because again unlike in the cases where integrations of differential equations are involved for
each function evaluation, the function evaluations here are purely algebraic and fast. Using
analytical Jacobian offers no clear computational speed benefits. In our comparison study
we have seen that the numerical Jacobians and analytical Jacobians match between the 6th
to 8th digit. With the scalings described in this report, this type of precision appears to
be more than adequate for convergence to occur. On the other hand, analytical Jacobian
will make the computer code significantly more complicated because second-order partial
derivatives of the right hand sides of the state equations are needed. Also, when some of
the path constraints in Eq. (19) become active, the associated Lagrange multipliers such
as the one in Eq. (39) will be functions of state and costate, adding more complexity to
the analytical Jacobian. When the launch vehicle design is evolving in the developmental
stage, or if the same ascent guidance code is desired to be applied to different launch vehicle
configurations, fewer labor-intensive changes to the code would be required with numerical
differencing. One exception is for the gradients of the boundary conditions in (7). The
gradients for these conditions are evaluated analytically because they are readily available.

At first glance, solving the linear system (10) may seem to be a formidable task in an
on-board environment because of the dimension of the problem (2n(M+1)) which can easily
be over 1000. However, a closer inspection reveals that the Jacobian matrix in (10) has a
special sparse pattern due to the dependence of Ek on only yk and yk−1 (cf. Eq. (5)).
Therefore a very efficient algorithm, both in speed and storage, based on Gauss eliminations
and sequential back substitutions can be devised to solve the system (10). More details in
this regard is discussed in the next section.

5.3 Gaussian Elimination and Back Substitution

Expand the algebraic system (8) in first-order Taylor series with respect to small changes
ΔY k at the current iterate Y k. At an interior point, k = 1, 2, ...,M , this gives

Ek(Y k + ΔY k,Y k−1 + ΔY k−1) ≈ Ek(Y k,Y k−1) +
∂Ek

∂Y k−1
ΔY k−1 +

∂Ek

∂Y k
ΔY k (13)

For a solution we want the updated value E(Y + ΔY ) to be zero, so the general set of
equations at an interior point can be written as

∂Ek

∂Y k−1
ΔY k−1 +

∂Ek

∂Y k
ΔY k = −Ek(Y k,Y k−1) (14)
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Similarly, the boundary conditions can be expanded in a first-order Taylor series for incre-
ments that improve the solution.

∂E0

∂Y 0

ΔY 0 = −E0(Y 0) (15)

∂EM

∂Y M
ΔY M = −EM(Y M) (16)

We thus have in Eqs (14)-(16) a set of algebraic linear equations to be solved for the
corrections ΔY k, iterating until the corrections are sufficiently small. The equations have a
special structure, because the Jacobians involve only points k and k− 1. Figure 5 illustrates
a typical matrix structure of the complete algebraic equations for the case of 8 variables
(two-dimensional ascent problem, n = 4) and 4 mesh points, with 4 boundary conditions
imposed at each of the endpoints. In the figure, “x” represents a coefficient of the FDEs,
“v” represents a component of the unknown solution vector, , “B” is a component of the
known right-hand side, and empty spaces represent zeros.

Figure 5: Matrix structure of FDEs with boundary conditions

Because of the special “block diagonal” structure of the matrix, a special form of Gaus-
sian elimination, which can minimize storage requirement of matrix coefficients by packing
the elements in a special blocked structure, can be applied to solve the problem.22 General
Gaussian elimination manipulates the algebraic linear equations by elementary operations,
such as dividing rows of coefficients by a common factor to produce unity in diagonal ele-
ments, and adding appropriate multiples of other rows to produce zeros below the diagonal.
In this special Gaussian elimination, we take advantage of the block structure by performing
a bit more reduction than in pure Gaussian elimination, so that the storage of coefficients
is minimized. Only a small subset of the 2n(M + 1) × 2n(M + 1) matrix elements needs to
be stored as the elimination progresses. Once the matrix elements reach the stage in Fig. 6,
the solution can follow quickly by a back substitution procedure.
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Figure 6: Target structure of the Gaussian elimination

The entire procedure except the back substitution step, operates only on one block of
the matrix at a time. The procedure contains 4 types of operations:

• partial reduction to zero of certain elements of a block using results from a previous
step;

• elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements;

• storage of the remaining nonzero coefficients for use in later steps;

• back substitution.

For more detail, please refer to Reference 22.

Once the correction ΔY is solved from the algebraic linear equations, we update the
solution by

Y j = Y j−1 + σjΔY j (17)

Where, the subscript “j” denotes the j-th iteration. The step size parameter σj is determined
by the following criterion

σj = max
0≤i

{
1

2i

⏐⏐⏐⏐ET (Y j−1 +
ΔY j

2i
)E(Y j−1 +

ΔY j

2i
) < ET (Y j−1)E(Y j−1)

}
(18)
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Starting from σj = 1, σj is halved repeatedly if necessary, till the above condition is sat-
isfied. This choice of the step size ensures that the sequence {‖E(Y j)‖} is monotonically
decreasing. Convergence is achieved when ‖E(Y j)‖ is no greater than a preselected toler-
ance. This step size selection in Eq. (18) is a deciding factor for the success of the finite
difference approach in solving the optimal ascent problem. The possible additional function
evaluations required in checking the step size condition pose negligible computational burden
since function evaluations are not expensive in this setting. The result on the other hand
is a much more robust algorithm, especially when the initial guess is not close to the final
solution.

5.4 Continuation on Atmospheric Density

It is well known in ascent trajectory optimization that the strong coupling of the aerodynamic
forces with the orientation of the body-axis and the inequality path constraints make the
convergence of any algorithm from a completely “cold” initial start difficult to achieve. That
is the reason why homotopic filters,6 sometimes up to 4 levels of homotopy,7 are used to
gradually distort the solution from the vacuum solution to the final solution. A similar
approach is taken here, except that the finite difference approach described in the preceding
section appears to need only one level of homotopy. The form of the continuation used here
is simpler and is only on the atmospheric density

ρ̂ = ερ, 0 ≤ ε ≤ 1 (19)

For each fixed ε, ρ̂ is used in place of the atmospheric density everywhere ρ appears in the
state-, costate-equations, and path constraints. Note that all the development in this part
of the report, although aimed at atmospheric ascent, applies without any modifications to
vacuum flight when ρ = 0. The homotopic parameter ε is initiated at 0 for the vacuum
solution, and gradually increased to unity for full atmospheric solution. The converged
solution for the current value of ε serves as the starting point for the solution with the next
value of ε till ε = 1. We have been using an increment of 0.1 on ε, which seems to be
adequate in our cases. In on-board applications, no continuation is usually necessary when
the solution in the previous guidance cycle is used as the starting point (that, ε = 1).

For the vacuum solution, in many cases linear interpolations between the initial values
and targeted final values of the state and constant guesses for p(t) suffice to be an initial
guess Y 0 that will lead to convergence. An analytical method to generate optimal vacuum
ascent trajectories is presented in Appendix B. This method is based on a succinct summary
by Calise et al6 of a number of elegant results on optimal vacuum guidance developed in the
last 3 decades. Some modifications have been made in the version in Appendix B. With this
type of algorithm, an optimal vacuum solution can be found very quickly and reliably. This
solution can in turn be used as the starting solution in the above continuation process.
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6

Verification, Validation and Testing

A number of test cases are presented in this section. The purpose is to demonstrate the
working of the endo-atmospheric algorithm developed above. More extensive testing results
are contained in Part IV of this report. All the cases use the vehicle parameters, mass prop-
erty, propulsion system Modeling, and aerodynamic Modeling of the X-33 vehicle. The X-33
is a single-stage suborbital vehicle with a lifting-body configuration (see Fig. 3). To make
the vehicle orbit-capable, the specific impulse is doubled in the simulations. All the missions
are launched from the Kennedy Space Center (KSC). The open-loop solutions obtained us-
ing the method described in this report are compared with those obtained by using other
methods. Closed-loop simulations are performed to assess the feasibility of on-board ascent
guidance with the approach proposed in this report. Unless stated otherwise, all the vectors
are expressed in the inertial launch plumbline coordinate system introduced in Section 2.2.

6.1 Terminal Conditions and Final Time Adjustment

The finite difference approach described in Section 4.1 is most convenient for fixed final-time
problems. Similar to what is done in Ref. [7], the optimal ascent problem is solved as a
series of fixed final-time problems to maximize the orbital energy, i.e., to minimize

J =
1

rf
− V 2

f

2
(1)

The final time is adjusted sequentially until the optimal value of J is equal to the specified
(negative) orbital energy.

Four-Constraint Problem
The orbital insertion conditions are given by the radius r∗f , velocity V ∗

f , orbital inclination
i∗, and flight path angle γ∗f . Note that γ∗f need not necessarily be zero in this case. These
conditions are equivalent to specified semi-major axis, eccentricity, orbital inclination, and
true anomaly at insertion point. Let 1N be a unit vector parallel to the polar axis of the
Earth and pointing to the North. For each fixed tf the 3 orbital insertion conditions (15) in
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this case can be expressed as

1

2
rT

f rf − 1

2
r∗2f = 0 (2)

1T
N(rf × V f) − ‖rf × V f‖ cos i∗ = 0 (3)

rT
f V f − rfVf sin γ∗f = 0 (4)

For simplicity, we replace rf in (1) with r∗f . Taking dot products of the transversality
condition Eq. (25) with rf , Eq. (26) with rf , Eq. (25) with V f , and both Eqs. (25) and
(26) with hf = rf × V f , we can eliminate the multiplier vector ν and obtain

(V T
f prf

)r2
f − (rT

f pVf
)V 2

f + (rT
f V f )(V

2
f − rT

f prf
) = 0 (5)

V T
f pVf

− V 2
f = 0 (6)

(hT
f prf

)[hT
f (rf × 1N)] + (hT

f pVf
)[hT

f (V f × 1N)] = 0 (7)

The above 6 equations (2-7) constitute the terminal boundary conditions (3) for this case.

To adjust the final time, we have found that the secant method works very well for
this purpose. Let t

(k−1)
f and t

(k)
f be two consecutive estimates of tf used to solve the above

problem, and J (k) and J (k−1) be the values of J when t
(k)
f and t(k−1) are used to solve the

optimal ascent problem. Then the next choice of tf is given by

t
(k+1)
f = t

(k)
f −

(
t
(k)
f − t

(k−1)
f

J (k) − J (k−1)

)
(J (k) − J∗), k = 1, 2, ... (8)

The correct tf is found when |J (k) − J∗| is within a preset tolerance, and the final velocity
Vf will be within a small neighborhood of V ∗

f . To use the secant search (8), two starting

values of t
(0)
f and t

(1)
f are needed. For on-board guidance, the converged value of tf in the

previous guidance cycle is the logical choice of t
(0)
f . Since the guidance solution in the current

cycle will be very close to the previous one, the variational relationship of δJ = H(tf)δtf in

optimal control problems can be used to generate t
(1)
f

t
(1)
f = t

(0)
f +

J (0) − J∗

H(t
(0)
f )

(9)

where H(t
(0)
f ) is the final value of the Hamiltonian. It is possible to simply use (9) to search

for all t
(k)
f , k ≥ 1, as in Refs. [7-8]. But we have found the secant method (8) to be much

more robust and efficient than the exclusive use of Eq. (9).

Five-Constraint Problem
The orbital insertion conditions are given by the radius r∗f , velocity V ∗

f , orbital inclination
i∗, flight path angle γ∗f = 0 (insertion at perigee/apogee, or into a circular orbit), and
longitude of ascending node Ω∗. A mission to rendezvous with an orbiting spacecraft would
call for the 5th constraint on Ω∗. With i∗ and Ω∗ specified, the direction of the angular
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momentum vector of the orbit is fixed, given in an Earth centered inertial (ECI) system by
the unit vector 1ECI

h = (sin Ω∗ sin i∗, − cos Ω∗ sin i∗, cos i∗)T . Let 1h be the representation of
1ECI

h in the inertial launch plumbline system. The 4 orbital insertion conditions for a fixed
final time are

1

2
rT

f rf − 1

2
r∗2f = 0 (10)

rT
f V f = 0 (11)

rT
f 1h = 0 (12)

V T
f 1h = 0 (13)

By taking dot products of the transversality condition Eq. (25) with V f , Eq. (26) with
V f , then with rf , and making use of the above conditions, we again eliminate the multiplier
vector ν and obtain

(V T
f prf

)r2
f − (rT

f pVf
)V 2

f = 0 (14)

V T
f pVf

− V 2
f = 0 (15)

The final time tf is adjusted the same way by Eq. (8) so that Vf = V ∗
f .

For staged launch vehicles where all the stages except for the last one burn to the de-
pletion of the fuel, the burn time of each stage is known for given throttle. The approach
in this report is still applicable with minor modifications. Note that the break points in the
finite difference discretization do not have to be equally spaced. In the case of a N -stage
vehicle, N different values for the step parameter h may be selected, each for a stage, such
that the staging times are located exactly at the last nodes of the stages. The changes of
mass and thrust due to staging can then be accommodated easily. The burn time of the last
stage is adjusted to meet the final velocity condition.

A number of other orbital insertion conditions were also examined and implemented. But
the principle is the same, thus we will not repeat them in this report.

6.2 Open-loop Solutions

The open-loop solutions are generated using the finite-difference (FD) method. For verifica-
tion and validation of the approach, the trajectories are compared to the ones obtained with
other established trajectory optimization tools. The wind velocity V w is set to be zero in
the solutions. The target orbit is a circular orbit at the altitude of 185.2 km (100 nm). Two
orbital inclinations are used: i∗ = 51.6 deg (the orbital inclination of the International Space
Station), and i∗ = 28.5 deg (the minimum orbital inclination from KSC). A third case is the
same circular orbit with i∗ = 51.6 deg and Ω∗ = −104 deg (a 5-constraint problem). The
initial conditions correspond to those after 5 seconds of vertical ascent (to clear the tower)
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with a given launch mass of the X-33. The following path constraints are imposed

|qα| ≤ 626.74 N-rad/m2 (750 psf-deg) (16)

T ≤ 4.0 (g) (17)

The engine throttle is set at unity before the thrust acceleration constraint is active. The
constraint on dynamic pressure will be added later in closed-loop simulations using the tech-
nique presented in Section 3.7. In the following results, 100 nodes were used in FD solutions.
For comparison, the solutions for the same missions were also obtained by a collocation soft-
ware, Sparse Optimal Control Software (SOCS),17 and by a trajectory optimization software
based on a pseudo-spectral method, Direct and Indirect Dynamic Optimization (DIDO).18

The SOCS solutions had the same 100 nodes, and the DIDO solutions had 20 nodes. The
performance index for both SOCS and DIDO was the final time.

Table 1 summarizes the flight times tf and final mass mf of the solutions. The results
for all the missions under different methods are very close. The slight differences among the
solutions were mostly due to the discretization errors of the different schemes used in the 3
methods. This comparison clearly supports the validity of the FD approach. The difference,
however, is in computation time. Depending on initial guesses, SOCS and DIDO could use
tens of minutes to find the solution, whereas the FD method takes only a small fraction of
one second to find the solution.

Figure 7 shows the 3-D ascent trajectories and ground tracks for the cases of i∗ = 51.6
deg and Ω = −104 deg in the inertial launch plumbline coordinate frame. As expected, the
trajectory with ascending node constraint had larger out-of-plane motion. Figure 8 depicts
the angle of attack, pitch angle and yaw angle along all the 3 trajectories by the FD ap-
proach. The constraint on the ascending node usually is one that requires larger yaw and
roll maneuvers and thus is a demanding constraint. Indeed larger yaw angle is observed in
Fig. 8 for that case. The variations of qα and axial thrust acceleration are plotted in Fig. 9
Both path constraints were accurately enforced.

6.3 Closed-loop Simulations

In closed-loop simulations, the point-mass vehicle dynamics, atmospheric Modeling, propul-
sive and aerodynamic forces, and winds were simulated by a FORTRAN program. The FD
algorithm, which is also implemented in FORTRAN, was called once every second to recal-
culate the optimal solution based on the current condition. The trajectory simulations used
the first data in the optimal body-axes attitude and engine throttle solutions (corresponding
to current time) as the guidance commands. No delays or actuator dynamics were simulated.
The missions and initial conditions were the same as in the open-loop solutions. In addition
to path constraints (16) and (17), a dynamic pressure constraint is also imposed

q ≤ 18194.4 N/m2 (380 psf) (18)

Closed-loop Simulations without Winds
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The previous 3 missions were repeated in closed-loop simulations with the wind velocity
V w set to be zero. The dynamic pressure constraint was handled using the technique de-
scribed in this report. Thirty nodes were used in the FD guidance solution. For on-board
guidance, fewer nodes can be used than in an open-loop solution because the time-to-go is
decreasing, thus the accuracy of the solution is increasing while the computation demands
would not be unnecessarily high. A converged solution was loaded before “launch” as the
starting point. On a desktop computer with a 1 GHz processor, the CPU time that each
guidance solution call took ranged from 0.07 to 0.25 second, without any optimization or
streamlining of the code. All the orbital insertion conditions were met accurately (See Table
3 in the following). Table 2 lists the flight times and final masses for all the 3 missions. Also
in the table are open-loop solutions by SOCS with the addition of the dynamic pressure
constraint (18). In all 3 cases the closed-loop guided trajectories and the SOCS open-loop
solutions have differences in the final mass of about 120 kg or less. These small discrepan-
cies are largely attributed to the differences between closed-loop simulations and open-loop
trajectories.

Figure 10 shows the altitude versus inertial velocity along the three trajectories. The
variations of dynamic pressure, throttle, and axial thrust acceleration are plotted in Fig. 11.
The effectiveness of the feedback approach described in Section 3.7 for enforcing the dynamic
pressure constraint is clearly seen: the dynamic pressure constraint (18) is accurately met
in all cases and the feedback throttle modulations are smooth. This is much similar to the
”throttle bucket” the Shuttle employs for the same purpose, except that the Shuttle throttle
bucket is pre-programmed (open loop) prior to launch. In comparison, the SOCS solutions
all have considerable zigzags in the throttle when the constraint (18) is active (not shown
in the figure). From Table 2, the performance (in terms of final mass) of the closed-loop
trajectory with the feedback adjustment of the throttle is apparently about the same as that
of the open-loop optimal solution. The variations of qα and α are in Fig. 12. Figure 13
contains the histories of pitch, yaw and roll angles along the 3 trajectories. As expected,
the mission with ascending node constraint called for more yaw and roll maneuvers than the
other two missions.

Closed-loop Simulations with Winds

So far in the simulations the wind velocity has been assumed to be zero. To test the
ascent guidance algorithm in a more realistic setting, winds were added in the simulations.
The wind profiles were based on the measured wind velocities at different altitudes at KSC,
and then smoothed for guidance purposes. In each simulated trajectory, the same smoothed
wind profile was used in both the guidance solution and simulation of the launch vehicle
dynamics. We realize that the actual wind the launch vehicle experiences will likely be
different from the measured wind because of the time delay between the launch and the time
when the measurement was taken. But the purpose here is to demonstrate how the ascent
guidance algorithm would perform in the presence of winds should perfect wind information
be available. We have also tested the cases when the wind profiles used in guidance algorithm
were correlated but not exactly the same as the wind profiles in simulations. In those cases
the enforcement of path constraints is affected by how well the measured wind profiles match
the actual wind profiles. With the volatile winds, some of which are quite strong (up to 75
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m/s), the limit of qα needs to be higher in order to fly through the winds. Thus the constraint
(16) is changed to

|qα| ≤ 1671.32 N-rad/m2 (2000 psf-deg) (19)

Ten trajectories were simulated for each of the above three missions, with a different wind
profile applied in each trajectory. Unlike open-loop ascent guidance, no “pre-launch” ad-
justments or updates were required for the guidance algorithm for each simulation. The
only update for each flight was the wind profile. The closed-loop ascent guidance algorithm
automatically incorporates the wind data in the guidance solution. The starting point was
still the same zero-wind solution used before. The CPU time for each guidance cycle did not
differ from the previously recorded value by any noticeable margin.

The simulation results are summarized in Table 3. The first 6 quantities with Δ are the
orbital insertion condition errors. The minimum, average, and maximum values of these
errors among the 10 trajectories for each mission are listed. The altitude errors were all
within 0.2 meter and velocity errors within 0.4 m/s. The quantity Δa is the error in semi-
major axis of the final orbit, which is a parameter combining the effects of Δrf and ΔVf .
The maximum of Δa was no greater than 0.6 km. All other errors were very small as well.
The peak values of |qα| were essentially all within the specified range. The product of qβ,
where β is the sideslip angle, was not listed for it remained practically zero because of the roll
maneuvers by the launch vehicle to “fly into the wind”. Even when the wind profiles used
in simulations were different from but correlated to the wind profiles used in the guidance
solution, such as in actual launch, the peak values of |qβ| in general were still significantly
smaller than those of |qα| (not shown here). The average final masses for all the 3 missions
were quite close to those in Table 2 for the trajectories without winds. It should be mentioned
that whether or not the wind data is included in the optimal guidance solutions can make
a sizable difference in the performance. If the wind profiles are merely used outside the
guidance solution to limit the attitude guidance commands for observing the qα-constraint,
the results using the X-33 vehicle Model can mean up to 500 kg less payload delivered into
the same orbit.

Table 1: Open-loop performance comparison

Mission FD SOCS DIDO
tf (sec) mf (kg) tf (sec) mf (kg) tf (sec) mf (kg)

i = 51.6◦ 320.48 38627.5 321.00 38476.2 321.12 38471.8
i = 28.5◦ 317.73 39135.7 318.05 39011.0 318.18 39007.2

Ω = -104◦ 322.71 38220.1 322.33 38236.5 322.81 38166.9
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Table 2: Closed-loop simulations without winds

Mission FD SOCS (open-loop)
tf (sec) mf (kg) tf (sec) mf (kg)

i = 51.6◦ 326.57 38182.4 323.23 38293.6
i = 28.5◦ 323.59 38706.7 320.24 38828.6

Ω = -104◦ 327.33 38023.9 324.5 38054.6

Table 3: Closed-loop simulations with winds (10 wind profiles for each mission)

i = 51.6◦ i = 28.5◦ Ω = −104◦

Min Mean Max Min Mean Max Min Mean Max

Δrf (m) -0.0165 0.0128 0.107 -0.0115 0.0152 0.112 -0.0145 0.0484 0.117

ΔVf (m/s) 0.1531 0.2290 0.3007 0.1625 0.2352 0.3327 0.1583 0.1909 0.25388

Δa (km) 0.2581 0.3856 0.5063 0.2735 0.3961 0.5602 0.2665 0.3215 0.4275

Δi (deg) 2.4E-5 4.6E-5 5.9E-5 -1.9E-06 -4.2E-07 5.7E-07 -5.8E-4 -2.4E-4 7.9E-05

ΔΩ (deg) N/A N/A N/A N/A N/A N/A -7.2E-4 -2.9E-4 9.8E-05

Δγ (deg) -3.3E-4 1.2E-4 1.7E-3 -2.6E-4 1.3E-4 1.5E-3 -3.0E-4 6.4E-4 1.7E-3

max |qα|∗ 919.4 1268.3 1608.3 694.2 1157.8 1641.8 1085.3 1255.8 1690.3

mf (kg) 38010.4 38131.1 38238.5 38507.2 38626.3 38785.4 37789.4 37948.9 38065.3

tf (sec) 326.51 328.66 331.21 322.68 326.77 329.51 327.29 329.66 333.19

* unit in N-rad/m2
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Figure 7: Three-dimensional ascent trajectories in launch plumbline system
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Figure 8: Angle of attack, pitch and yaw angles in open-loop solutions
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Figure 9: Variations of qα and axial thrust acceleration in open-loop solutions
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Figure 10: Altitude versus inertial velocity along closed-loop trajectories
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Figure 11: Dynamic pressure, throttle and axial acceleration along closed-loop trajectories
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Figure 12: Variations of qα and α along closed-loop trajectories (no winds)
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Figure 13: Variations of Euler angles along closed-loop trajectories (no winds)
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7

Exo-Atmospheric Closed-Loop Ascent
Guidance

7.1 Introduction

Launch ascent mission planning and guidance is an engineering area where routine appli-
cations of optimization tools and optimal control theory are a necessity rather than nicety.
Indeed, on-board algorithms for solving the optimal ascent problem are the foundation of
closed-loop ascent guidance for upper stages of launch vehicles since the 1960s. The exam-
ples of classical exo-atmospheric optimal ascent guidance algorithms include the Iterative
Guidance Mode (IGM) guidance employed for the Saturn V rockets1 and the Powered Ex-
plicit Guidance (PEG) for the Space Shuttle.2 When the optimal ascent problem is solved
on-line repeatedly with the current condition as the initial condition, the guidance solution
is in effect closed loop.

For multiple-stage launch vehicles, it is well known that allowing a coast arc of optimal
duration between two upper stages can reduce propellant consumption (or increase orbital
insertion mass), in some cases quite appreciably. In other scenarios a long coast is necessary
between two burns, such as insertion into high-altitude orbits, or orbital transfers. However,
there are additional challenges resulting from the presence of coast arcs and multiple burns.
Multiple burns and coast arcs typically render the optimal control problem much more sen-
sitive and increase the difficulty in achieving convergence of the algorithm. This heightened
sensitivity is largely due to two reasons: (a) long coast arcs tend to amplify any variations
in the condition at the beginning of the coast; (b) the final stage/burn usually has a much
smaller thrust acceleration, and it would be incapable of making large flight path corrections
(indeed, the last burn in many orbital insertion cases is almost tangential, mainly responsi-
ble for pushing the velocity to the required value). The fact that even today, missions with
multiple-burns and coast arcs are planned and executed by the ground control is probably
attributable in no small part to these challenges. The recent on-going efforts in striving
to achieve the capabilities of responsive space launch mission planning and operations and
autonomous space operations have brought renewed strong interest in this subject.

To overcome the aforementioned difficulties, researchers have continued to seek more
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robust and reliable methods to handle the optimal ascent problem with multiple burns and
coast arcs. References6, 10, 11, 23–26 represent only a small sampling of the literature. With the
exception of the work by Dukeman,10, 11 most existing work treats the problem essentially
in a single-shoot formulation, i.e., the missing initial costate is iterated on to satisfy the
terminal constraints and transversality conditions. References10 and11 employ a numerical
multiple-shooting approach to the problem including the endo-atmospheric ascent portion.

In this report we present an analytical multiple-shooting method for exo-atmospheric
multi-burn optimal ascent. The overarching theme in this effort is to strive for enhanced ro-
bustness and reliability of the algorithm. In this approach the optimal trajectory is treated
in segments of burn and coast arcs. The costate in each segment is expressed in closed-
form solution and the state in analytical solution involving thrust quadratures. Such a
multiple-shooting formulation reduces the sensitivity of the problem with respect to the pa-
rameters to be found, especially beneficial to the cases with long coast arcs. The orbital
insertion conditions, transversality conditions, and matching continuity conditions at the
break points constitute a system of nonlinear algebraic equations with an analytical Jaco-
bian. For numerical solutions, the existing work almost invariably uses the classical or some
modified version of the Newton method. Here we adopt the highly-regarded Powell’s dog-leg
method28 for improved robustness and reliability of the overall algorithm in more difficult
and even possibly singular cases (where the optimal coast time reduces to zero). Another
major component of this report is a detailed analysis of the class of optimal ascent problems
under discussion. This analysis reveals several properties previously unknown to the commu-
nity, to the best of our knowledge. The results allow us to resolve satisfactorily a numerical
scaling mismatch issue in the optimal ascent problem that could otherwise severely hinder
convergence reliability of the algorithm. All these measures contribute to a robust and fast
algorithm for optimal multi-burn ascent planning and closed-loop guidance. The algorithm
is verified with an industry standard software, Optimal Trajectories by Implicit Simulation
(OTIS).29

7.2 Multi-Stage Optimal Ascent Problem with Coast

Instead of seeking maximum generality, we choose tacitly to present the development in
a burn-coast-burn pattern for readability of the presentation. There is no methodological
difficulty to extend the development here to any combinations of other numbers of burn and
coast arcs. Borrowing the Shuttle terminology, we will refer the burnout of the first vacuum
burn/stage as Main Engine Cut-Off (MECO), and the second burn/stage after a coast as
the Orbital Maneuver System (OMS) burn. For on-orbit maneuvers it is understood that
both burns can be made by the same engine, and there is no staging at the end of the first
burn.
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7.3 Problem Formulation

After the launch vehicle clears the dense atmosphere, the three-dimensional point-mass equa-
tions of motion in vacuum are

ṙ = V (1)

V̇ = g(r) +
T1T

m(t)
(2)

ṁ = − T

g0Isp
(3)

where r ∈ R3 and V ∈ R3 are the position and inertial velocity vector in an inertial frame.
The gravitational acceleration g is a function of r, and g0 is the magnitude of g at a reference
radius R0. The engine thrust magnitude is T , and the unit vector 1T defines the direction of
the thrust vector. The vehicle mass rate ṁ is determined by the last equation above where
Isp is the specific impulse of the engine. An ingenious approximation to the gravitational
acceleration is the so-called linear gravity approximation30

g = − μ

r̄2

r

r̄
= −ω̄2r (4)

where μ is the gravitational parameter of the Earth, r̄ is another reference radius (e.g., an
average value of r along the ascent trajectory), and ω̄ =

√
μ/r̄3 is the Schuler frequency at

r̄. This approximation preserves the more important characteristic of the gravity in ascent
flight, the direction, and enables analytical solution to the co-state equation in optimal exo-
atmospheric flight as shall be seen later. The minor gravity magnitude difference caused by
this approximation in ascent typically has little influence on the validity of the solution. For
multiple-burn trajectory, different value of the ω̄ may be used for each burn arc so that any
approximation effect on gravity magnitude is minimized.

An assumption on the class of problems treated is that the initial condition (r0, V 0)
is known. Another practical assumption on the methodology developed in this report is
that the burn times of all the powered stages except for the last are all determined by their
propellant loading and mass flow rate. The burn time of the last powered stage and the
coast times are optimized. Therefore the final time for the complete trajectory is free. For
two-burn orbital transfers, the burn time of the first burn may also need be optimized. In
such a case, all the developments and equations in the rest of this report remain valid, and
one additional interior switching condition will be added (cf. Ref.10).

For better numerical conditioning, the distances are normalized by R0, the velocities by√
R0g0, and the time by

√
R0/g0. With some abuse of notation, we will still use r and V to

denote the dimensionless position and velocity vector, respectively. With the above linear
gravity approximation, the dimensionless equations of motion are

r′ = V (5)

V ′ = −ω2r + AT1T (6)
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where in above equations the differentiation is with respect to the nondimensional time
τ = t/

√
R0/g0, ω =

√
(R0/r̄)3 is the nondimensional Schuler frequency, and AT = T/mg0

is the instantaneous thrust acceleration in g. The mass rate equation becomes

m′ = −T
c

(7)

where c = Isp/
√
R0/g3

0 is a constant for each powered stage. The orbital insertion conditions
are generally in terms of k equality constraints (k ≤ 6) on the final state

φ(rf ,V f) = 0 (8)

The optimal thrust direction vector 1T is determined by the solution of the optimal
control problem that minimizes the performance index

J = −
∫ τf

τ0

m′dτ =

∫ τf

τ0

T

c
dτ (9)

It is clear that this performance index amounts to minimization of propellant-consumption
for a given initial mass. The standard optimal control theory14 calls for the use of the
Hamiltonian

H = pT
r V − ω2pT

V r + pT
V 1TAT − pm

T

c
− T

c

= pT
r V − ω2pT

V r + T

(
pT

V 1T

mg0

− pm

c
− 1

c

)
:= H0 + TS (10)

In above Hamiltonian pr and pV constitute the costate vector, satisfying the differential
equation (

p′
r

p′
V

)
= −

(
∂H/∂r

∂H/∂V

)
=

(
ω2pV

−pr

)
(11)

In particular, pV is called the primer vector because the optimal thrust direction 1T =
pV /||pV ||.31 The switching function S, defined as

S =
pT

V 1T

mg0
− pm

c
− 1

c
(12)

determines when to use full thrust and when to coast (T = 0). Specifically,

T =

{
Tmax if S > 0,

0 if S < 0.
(13)

The case of singular thrust arcs (when S ≡ 0 in a finite period of time and the thrust takes
some intermediate values 0 < T < Tmax) is not considered because it is well known that,
except for a few pathological cases, the singular solutions are not optimal in exo-atmospheric
flight.32 Suppose in our discussion that the coast between the first and second stage ends
at a to-be-determined time τOMS. It is then necessary that S(τOMS) = 0 (and S(τ) > 0
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for τ ∈ (τOMS, τf )). Since the total final time τf is free for this optimal ascent problem,
the Hamiltonian H defined in Eq. (10) is equal to zero along the optimal trajectory.14 As a
result, the condition S(τOMS) = 0 is equivalent to

H0(τOMS) = 0 (14)

This equation avoids the computation of the mass costate pm thus is preferred to the condition
S(τOMS) = 0. For multiple coast arcs, refer to Ref.10 for additional interior point conditions.
In light of this observation and other necessary conditions discussed above, we conclude that
the mass costate pm need not be explicitly computed.

7.4 Analytical Solution for Burn Arcs

The analytical solutions to the costate equation (11) and analytical solution to state equa-
tions (5-6), first presented in Ref.30 and later also applied in Refs.5 and,12 are given below
for completeness. Suppose that the starting time for the ascent trajectory is τ0. Let pV0

and
pr0

are the (to-be-determined) initial conditions for the costate at τ0. Define

λ(τ) =

(
pV (τ)

−pr(τ)/ω

)
, λ0 =

(
pV0

−pr0
/ω

)

For τ ≥ τ0 the costate equation Eq. (11) has closed-form solution

λ(τ) =

[
cos[ω(τ − τ0)]I3 sin[ω(τ − τ0)]I3
− sin[ω(τ − τ0)]I3 cos[ω(τ − τ0)]I3

]
λ0 := Φ(τ − τ0)λ0 (15)

where I3 is a 3 × 3 unit matrix. Define

Ic(τ, τ0) =

∫ τ

τ0

1pV
(ζ) cos(ωζ)AT (ζ)dζ :=

∫ τ

τ0

ic(ζ)dζ ∈ R3 (16)

Is(τ, τ0) =

∫ τ

τ0

1pV
(ζ) sin(ωζ)AT (ζ)dζ :=

∫ τ

τ0

is(ζ)dζ ∈ R3 (17)

where 1pV
= pV /||pV ||. Note that thrust acceleration AT (·) is time-varying, because the

mass is changing. Also pay attention to the the meaning of the time arguments in Φ(τ − τ0),
Ic(·, ·) and Is(·, ·) because they will be important in multi-burn cases. Let

x(τ) =

(
r(τ)

V (τ)/ω

)
, x0 =

(
r0

V 0/ω

)
, I(τ, τ0) =

[
Ic(τ, τ0)
Is(τ, τ0)

]
(18)

It can be easily verified that the state equations Eqs. (5) and (6) have the following solution26

x(τ) = Φ(τ − τ0)x0 + Γ (τ)I(τ, τ0) (19)

where

Γ (τ) =
1

ω

[
sin(ωτ)I3 − cos(ωτ)I3
cos(ωτ)I3 sin(ωτ)I3

]
(20)
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The thrust integrals Ic and Is can be evaluated by a quadrature formula. For example, with
δ = (τ − τ0)/4, the Milne’s rule leads to12

Ij(τ, τ0) =
(τ − τ0)

90
[7ij(τ0) + 32ij(τ0 + δ) + 12ij(τ0 + 2δ)

+ 32ij(τ0 + 3δ) + 7ij(τ0 + 4δ)] , j = c, s (21)

The values of the primer vector pV at τ0 + iδ are needed in evaluating the thrust integrals,
and they are given by Eq. (15) as functions of λ0. Our experiences show that with the non-
dimensionalization described in this report, the above quadratures are sufficiently accurate
for powered flight up to several hundred seconds. Additional segments in time grid may be
used for longer powered flight if necessary.

7.5 Solution for Coast Arcs

For coast flight where AT = 0, Ref.26 propagates the state by continuing to use Eq. (19)
which has only the initial response term now. We believe that it is more advantageous to
use a more accurate solution approach to the Keplerian motion in a coast arc. The f and
g series in orbital mechanics33 are an option. These series are Taylor series expansions of r
and V in time, with all the coefficients expressed as functions of r0 and V 0. The inverse-
square gravity Model is used, and the accuracy of the solution is not compromised by the
linear gravity approximation even with relatively large radial distance changes. A possible
drawback of using the f and g series is that for a fixed number of terms in the software
for the truncated Taylor series, the accuracy deteriorates as the time of coast increases. Yet
another choice is to use the well established method by Goodyear34 to solve the Kepler initial
value problem as done in Ref.11 This approach gives complete Keplerian motion solution to
the problem within the machine accuracy that includes the state at a specified future time as
the functions of the current state (r0 V 0), and the gradients of the future state with respect
to r0 and V 0. This is the method we have adopted in this work.

The costate, on the other hand, may continue to be propagated by Eq. (15) during the
coast. A second option is to employ the analytical solution to the costate in Keplerian motion
developed by Lawden.31 This approach preserves the Model of inverse-square gravity field,
but the solution is given in a rotating frame related to the orbital motion. Once the Kepler
initial value problem is solved, the corresponding costate can be readily transformed back to
the original inertial frame. In this work we choose to propagate the costate by Eq. (15) for
its simplicity. In any approach, the state and costate at the end of the coast are uniquely
defined by their values at the beginning of the coast and the coast time.

7.6 Multiple-Shooting Formulation

In principle, the optimal exo-atmospheric ascent problem from a given initial condition
{r0,V 0} with a coast arc is determined by 8 unknowns: pr0

∈ R3, pV0
∈ R3, τOMS (the

time when coast stops and the second stage burn begins), and the free final time τf . The
corresponding 8 conditions are the k-terminal conditions in Eq. (8), switching condition Eq.
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(14), transversality condition H(τf) = 0, and the other 6 − k transversality conditions (see
Refs.5 and12 for more detail on how to obtain the remaining 6−k transversality conditions).
Directly solving for the 8 unknowns to satisfy the 8 conditions is in essence a single-shooting
approach. Difficulties in convergence arise when the coast time is just Moderately long
and/or the thrust acceleration of the last stage is relatively small, because in these cases the
sensitivity of the problem increases and the ability for the final burn to steer the trajectory
onto the terminal condition manifold weakens.

To enhance the robustness of convergence of the algorithm, two additional nodes are
added to the formulation of the numerical problem. One node is placed at the end of the
first powered stage. Let τMECO > τ0 denote the instant when the engine of the first powered
stage shuts down, and recall that τMECO is considered specified. The other node is naturally
placed at τOMS when the coast ends and the second powered stage begins, where τOMS is to
be determined. Figure 14 gives an illustration of this multiple-shooting formulation. Define
the problem solution vector y = col(x λ) ∈ R12. In the interval (τ0, τMECO), the solution
of y is determined by the condition y0 at τ0 by Eqs. (15) and (19). We will use y−

MECO

to signify the value of y at τMECO as τ → τMECO from the left. Introduce two additional
to-be-determined vectors

y+
MECO =

(
x+

MECO

λ+
MECO

)
, y+

OMS =

(
x+

OMS

λ+
OMS

)
The propagation of y along the coast arc in the interval (τMECO, τOMS) is computed by using
y+

MECO as the starting condition. In particular we will denote such propagated value of y at
τOMS by y−

OMS. The state and costate along the last powered trajectory in (τOMS, τf ) are
propagated from y+

OMS. The continuity of the state and costate at τMECO and τOMS requires
the following two conditions to be met

y−
MECO − y+

MECO = 0 (22)

y−
OMS − y+

OMS = 0 (23)

The above multiple-shooting formulation increases the numbers of unknowns by 24 (the
number of scalars included in y+

MECO and y+
OMS). The continuity conditions Eqs. (22) and

(23) provide the same number of additional equations. Thus the dimension of the zero-finding
problem is now 8+24=32. Note that the solutions for the state and costate make the problem
completely analytical, from function evaluations to Jacobian computation. The evaluation
of the Jacobian requires some care because of the multiple segments of the trajectory. The
Appendix provides several useful equations for the part of the Jacobian involving the thrust
integrals in Eqs. (16) and (17). The Modest dimension of the problem does not constitute
a heavy computational requirement that cannot be met more than adequately by a desktop
computer (see Section 10 for some data on CPU time).

In addition to the benefit of enhanced robustness of the algorithm, another advantage of
this multiple-shooting formulation of practical significance is the simplicity of the switching
condition in Eq. (14) under this setting (see Eq. (29) later for example). This feature further
contributes to improve the convergence on this condition. And the complexity of the gradient
of the switching condition is also reduced notably, particularly so in the case of multiple coast
arcs, where the switching condition will be more complicated.10

47



1 MECO OMS f

atmo-
spheric

2nd  stage coast 3rd  stage 

y1

y -
MECO

y +
MECO

y -
OMS

y +
OMS

yf

Figure 14: Multiple-shooting formulation for optimal exo-atmospheric ascent with coast

7.7 Equality Constraints

The unknowns in the problem defined in Section 6.6 are

z = (λ0, λ+
MECO, x+

MECO, τOMS, λ+
OMS, x+

OMS, τf ) ∈ R32 (24)

In this section we list all the 32 equality constraints that z must satisfies in order to meet
the necessary condition of optimal solution and the continuity conditions. The continuity
constraints in Eqs. (22) and (23) take the explicit forms of

s1(z) = Φ(τMECO − τ0)λ0 − λ+
MECO = 0 (25)

s2(z) = Φ(τMECO − τ0)x0 + Γ(τMECO)I0(τMECO, τ0) − x+
MECO = 0 (26)

s3(z) = Φ(τOMS − τMECO)λ+
MECO − λ+

OMS = 0 (27)

s4(z) = xcoast(τOMS − τMECO,x
+
MECO) − x+

OMS = 0 (28)

where the thrust integral I0(τMECO, τ0) = (Ic, Is)
T has its components defined as in Eqs. (16-

17) with λ0 used in the computation of the primer vector pV (·). The state vector xcoast(τOMS−
τMECO,x

+
MECO) is the state at τOMS (the end of coast arc), propagated by the solution of

the Kepler’s initial value problem from τMECO with the initial condition x+
MECO. The scalar

switching condition in Eq. (14) is conveniently expressed as

s5(z) = λ+T
OMSx+

OMS = 0 (29)

Let λf and xf be the final costate and state, determined in [τOMS, τf ] through Eqs. (15) and
(19) with the initial conditions and λ+

OMS and x+
OMS, i.e.,

λf = λ(τf ,λ
+
OMS) = Φ(τf − τOMS)λ+

OMS (30)

xf = x(τf ,λ
+
OMS,x

+
OMS) = Φ(τf − τOMS)x+

OMS + Γ(τf )I
oms+(τf , τOMS) (31)

where Ioms+

(τf , τOMS) is the thrust integral defined in Eq. (18) by pV (·) computed in the
interval [τOMS, τf ] with λ+

OMS as the initial condition.
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The k orbital insertion conditions plus the 6−k equations derivable from the transversality
conditions (cf. Refs.11 ,,5 and12) constitute another 6 constraints in the form of

s6(z) = s6(xf ,λf) = 0 (32)

The specifics of constraints in Eq. (32) depends on the particular set of orbital insertion
conditions. References5 and12 provide some examples in this regard. The last constraint is
the transversality condition on the Hamiltonian H(τf ) = 0 for the final time τf is free. This
condition can be simplified by taking into consideration of the transversality condition on
pm(τf). Since m(τf ) is free, we should have the transversality condition14

pm(τf ) = 0

Use of this condition and the optimality condition of 1T = pV /‖pV ‖ in H(τf ) = 0 based on
Eq. (10) leads to the last constraint

s7(z) = −ω2λT
f xf + AT (τf )‖pV (τf )‖ − T

c
= 0 (33)

where pV (τf ) is the primer vector at τf , propagated by Eq. (15) from τOMS with the initial
condition of λ+

OMS.

7.8 Numerical Method for Exo-Atmospheric Ascent

The optimal ascent problem in the preceding section eventually boils down to a multivariate
zero-finding problem in which a system of nonlinear algebraic equations is to be solved

s(z) = 0, z ∈ R32 (34)

where s(·) = (s1, s2, s3, s4, s5, s6, s7) : R32 → R32 is the smooth vector function defined in
Section 6.7. The classical Newton-Raphson method is a common algorithm used for such
a purpose. While simple and effective in many cases, the Newton-Raphson method can
suffer from convergence problems when the initial guess is far from the solution, and when
the Jacobian of the system (34) is singular or nearly singular. These problems are handled
much better by the renowned Powell’s dog-leg trust-region method.28 This method solves
the above nonlinear equations by minimizing the scalar function F

F (z) = sT (z)s(z) (35)

Obviously the solution to Eq. (34) is the solution to the minimum F . A solution of local
minimum for F can exist that is not the solution of Eq. (34) if Fmin �= 0. But often times
this is a case where the solution to Eq. (34) does not exist or the initial guess is very poor.
In such a case one would probably be receptive to taking a solution that minimizes F .

Powell’s dog-leg method is in essence a combination of the Newton and steepest-descent
approach. At each iterate zk the update is constructed as

δz = α1

(
∂s

∂z

)−1

s(zk) + β1
∂F

∂z
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The coefficients α1 and β1 are determined in the algorithm. When α1 = −1 and β1 = 0, the
above update reduces to the standard Newton update. This is exactly what the algorithm
does whenever the standard Newton update has a size within the trust region. Therefore the
nice quadratic convergence property of the Newton method is preserved when possible. For
detail of the algorithm, the reader is referred to Ref.28 In addition to the well-documented
superior performance and robustness, other attractive features of this algorithm include that
(i) exact Jacobian of the system Eq. (34) is not required. In fact, the Jacobian can even be
singular (in such a case α1 = 0 in above update), a case where the Newton method will fail;
(ii) the algorithm will satisfy one of the two stopping criteria in a finite number of iterations.
All these characteristics are appealing to our applications. We have encountered a number
of cases with relatively challenging orbital insertion conditions for which the Newton method
cannot converge. The code with Powell’s method on the other hand finds the solution readily.

A singularity problem arises in the case where the optimal coast time turns out to be
zero. In such a case the problem loses one parameter (τOMS = τMECO) and the switching
condition in Eq. (14), hence Eq. (29), will not be needed. With the Powell’s method, a simple
modification of the formulation can automatically adjust the problem to such a case, so the
same code can be used for both cases with and without coast arc. Define the parameterization

τOMS =
τcoastmax

2
sin z̃19 +

τcoastmax + 2τMECO

2
(36)

where τcoastmax is an upper bound of the coast time. Clearly when z̃19 = −π/2, the above
τOMS = τMECO, and the coast time is zero. Now let z̃19 replace τOMS as a parameter to be
found. The constraint in Eq. (29) is modified to be

s5 = (1 + sin z̃19)λ
+T
OMSx+

OMS = 0 (37)

When the optimal coast time= 0, we have sin z̃19 = −1, and s5 = 0 automatically. The
problem reduces to a two-burn problem, and the Powell’s method has no difficulty to proceed
to find the solution without the need to make any changes to the same burn-coast-burn
code. In contrast, this simple approach will cause difficulty to Newton method, because
when sin z̃19 = −1 (thus cos z̃19 = 0), the gradient of ∂s5/∂z is zero and the Jacobian of the
problem, ∂s/∂z ∈ R32×32, is singular. As a result, a separate code is required to handle the
case where the optimal coast is close or equal to zero.
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8

Analysis of the Condition H(τf) = 0

The condition H(τf) = 0 in Eq. (33) turns out to be a very numerically difficult constraint.
This difficulty arises from the fact that, unlike other constraints in Section 6.7, Eq. (33)
can have a great mismatch in numerical scaling. Specifically, the term T (τf)/c is about 5
orders of magnitude larger than the rest of the terms in Eq. (33) when the state and costate
vectors are dimensionless and the costate vector (pT

r pT
V )T is chosen to have a magnitude on

the order of unity, as usually done in practice. This difficulty, however, can be alleviated by
proper scaling of the problem. The governing equations for the costates are

p′
r = −∂H

∂r
= −∂g

T (r)

g0∂r
pV (1)

p′
V = −∂H

∂V
= −pr (2)

p′m = −∂H
∂m

=
T ||pV (τ)||
m2(τ)g0

(3)

where the optimality condition 1∗
T = pV /||pV || has been used in Eq. (3). Clearly when the

vector (pT
r pT

V pm)T is scaled by any positive constant, the solutions to above costate equa-
tions remain unchanged. If the performance index (9) is also scaled by the same constant, the
switching function S in (12) will stay the same, hence the optimal solution to the problem
will be the same. Thus, if we choose to scale the performance index and (pT

r pT
V pm)T by

the value of c/T of the second stage, and, with some abuse of notation (again), still use pr

and pV to denote the corresponding vectors after the scaling, transversality condition (33)
now becomes

H(τf) = pT
rf

V f + pT
Vf

g(rf)/g0 + AT (τf )||pVf
|| − 1 = 0 (4)

This version of the condition H(τf) = 0 now admits costate vector (pT
r (τf) pT

V (τf ))
T of

magnitude comparable to those of dimensionless V f and rf (on the order of unity).

We shall take the scaling analysis further. In fact, the above discussion also shows that the
transversality condition H(τf ) = 0 is equivalent to the following condition for any constant
κ0 > 0

pT
rf

V f + pT
Vf

g(rf)/g0 + AT (τf )||pVf
|| − κ0 = 0 (5)
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Suppose for the moment that the burn-coast-burn problem formulated in Section 6 is solved
without explicitly using the condition H(τf) = 0. Rather, constraint (33) is replaced by the
following condition

pT
rf

V f + pT
Vf

g(rf)/g0 + AT (τf )||pVf
|| := H0(τf ) + AT (τf )||pVf

|| > 0 (6)

Once the problem is solved, let κ0 = H0(τf )+AT (τf )||pVf
|| > 0. Then, the state and costate

solutions so obtained and the positive constant κ0 satisfy condition (5). In other words, the
costate vector (pT

r pT
V pm)T and the performance index can be scaled by a positive constant

κ1 =
T (τf )

κ0c

so that the scaled variables will meet precisely the condition H(τf ) = 0 as in the original
form in Eq. (33). This way, all the necessary conditions of optimality for the problem are
now met. Let us formalize this finding:

Property 1:

In a free final-time, minimum propellant-consumption, exo-atmospheric rocket flight prob-
lem, the transversality condition H(τf) = 0 is equivalent to the condition in Eq. (6), repro-
duced below for the convenience of reference

pT
rf

V f + pT
Vf

g(rf)/g0 + AT (τf )||pVf
|| > 0

This property may be of limited practical usefulness by itself. However, we shall show
next that under two very reasonable assumptions, condition (6) will be met automatically by
the optimal solution without explicit enforcement. Consequently, the condition H(τf) = 0
will be satisfied automatically. The two assumptions that we will use to establish our result
are:

Assumption 1: The gravity field is a Newtonian inverse-square force field.

Assumption 2: The orbital insertion conditions in Eq. (8) are such that they satisfy the
following condition in the absence of thrust (T = 0)

dφ(rf ,V f)

dτ
= φ′(τf ) = 0 (7)

Assumption 1 means that the unpowered motion is a Keplerian orbit. Assumption 2
above is satisfied when the constraints in φ(rf ,V f ) are expressed in terms of any of the
Keplerian orbital elements such as a − aref = 0 or e − eref = 0, where a and e are the
semi-major axis and eccentricity, respectively, and aref and eref are the specified values for
them. In fact, for such a constraint φ′

i(τ) ≡ 0, 1 ≤ i ≤ k, for τ ≥ τf because of the constancy
of the orbital elements. Other cases where Assumption 2 is met include constraints on the
radius and the magnitude of velocity for insertion into a circular orbit, or a non-circular
(elliptic, parabolic or hyperbolic) orbit at the periapsis, or insertion into an elliptic orbit
at the apoapsis. In the case of non-circular orbits, such a constraint meets the condition
φ′

i(τf ) = 0 only at the orbital insertion point τf . But this is all we need. In other words,
most of typical orbital insertion conditions can be formed to satisfy Assumption 2.

52



With this preparation, we are ready to formally make the following claim:

Property 2:

Under Assumptions 1 and 2, the condition

H0(τf ) = pT
rf

V f + pT
Vf

g(rf)/g0 = 0 (8)

is always automatically satisfied by the solution to an exo-atmospheric optimal ascent prob-
lem.

Let us justify the claim. The transversality conditions on the costate are14

(
prf

pVf

)
=

(
∂φT (rf ,V f)/∂rf

∂φT (rf ,V f )/∂V f

)
ν (9)

where ν ∈ Rk is a constant multiplier vector. Using the expressions of prf
and pVf

from
Eq. (9) in H0(τf), we have

H0(τf ) = νT

[
∂φ(rf ,V f)

∂rf

V f +
∂φ(rf ,V f)

∂V f

g(rf)/g0

]
(10)

Note that r′
f = V f and V ′

f = g(rf)/g0 when T = 0. So in the absence of thrust, the sum
in the above equation is equivalent to

H0(τf) = νT

[
∂φ(rf ,V f)

∂rf

r′
f +

∂φ(rf ,V f)

∂V f

V ′
f

]
= νT φ′(τf ) = 0 (11)

where Assumption 2 has been used in arriving this condition. This conclusion is first arrived
in Ref.11 based on an analysis of orthogonality of the final costate vector with respect to
the manifold of the admissible variations of the final state vector. Since H(τf) = H0(τf) +
T (τf)S(τf ) andH(τf) = 0 is a transversality condition for the optimal solution, an immediate
corollary of H0(τf ) = 0 is that under Assumptions 1 and 2, the switching function satisfies
S(τf) = 0 along the optimal solution. Note that S(τf) = 0 is not always true because τf is
not an interior switching point.

Because AT (τf )||pV (τf )|| > 0, condition (6) is always met if H0(τf ) = 0. Combining
Property 1 and 2, we see that the enforcement of the transversality condition H(τf ) = 0
is not necessary in finding the solution to the problem of present interest to us, hence the
conclusion

Property 3:

In a free final-time, minimum propellant-consumption, exo-atmospheric ascent problem
in which Assumptions 1 and 2 are satisfied, the transversality condition H(τf) = 0 need not
be enforced in the solution process.

Based on the above conclusion, one of the to-be-determined unknowns in Eq. (24) for
the burn-coast-burn problem may be eliminated in correspondence with the removal of the
conditionH(τf) = 0. Instead of doing so, which has no clear and convenient choice, we choose
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to keep the same unknowns as in Eq. (24). But we pick a simpler and easier replacement to
the condition H(τf) = 0. Numerous such choices exist. For instance, one could be

s7 = pT
V (τf )pV (τf) − c7 = 0 (12)

where c7 > 0 is a constant. The only function of this last constraint is to maintain the same
number of equations as the number of unknowns in Eq. (24), and keep the Jacobian of the
constraints nonsingular. Therefore, in the numerical code, we do not even need to actually
evaluate s7 and attempt to enforce s7 = 0. Rather, we can always set s7 ≡ 0 every time
when the value of s7 is required (in the case of Eq. (12), this would be equivalent to choosing
c7 to be exactly equal to pT

V (τf)pV (τf ) each time s7 is evaluated). When the linear gravity
approximation is used, another alternative is to use the constraint

s7 = pT
r (τf)pr(τf ) + ω2pT

V (τf )pV (τf) − 1 = 0 (13)

It can be easily shown that the magnitude of the vector λ(τ) = (pT
r ωpT

V )T is constant
under the linear gravity Model. Therefore if the initial value of λ(τ0) is scaled to have
unit length, the constraint in Eq. (13) is trivially met. Such a normalizing constraint is
found to be beneficial to convergence when the exo-atmospheric algorithm interacts with the
endo-atmospheric algorithm in certain way as described in Ref.27

In the end, we still have the same number of unknowns in Eq. (24) as the number of
constraints s = (s1, s2, s3, s4, s5, s6, s7), where s7 is a trivial constraint, and the rest are
defined in the preceding section.

Finally, as a general interest, it is worthwhile to point out that a similar claim can be
made for the minimum-time optimal ascent problem for insertion into a Keplerian orbit. In
such a problem, the transversality condition on the Hamiltonian is14

H(τf) = pT
rf

V f + pT
Vf

g(rf )/g0 + T (τf)
pT

V (τf)1T (τf )

m(τf )g0
= 1

Suppose that the problem is solved without explicitly enforcing the above condition. Prop-
erty 2 above still holds, which together with 1T (τf ) = pV (τf)/‖pV (τf)‖ leads to

H(τf) = T (τf)
‖pV (τf )‖
m(τf )g0

> 0 (14)

We now make note of two observations of invariance pertinent to the problem:

1. The costate vector (pT
r pT

V )T can be scaled by any constant and the costate equa-
tions (1–2) are still satisfied;

2. When the costate vector (pT
r pT

V )T is scaled by any positive constant, the resultant
optimal control from the optimality condition and the state trajectory will remain the
same.

Hence if we scale the costate by a positive constant

κ2 =
m(τf )g0

T (τf)‖pVf
‖ > 0
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the optimal solution will remain unchanged, and we will now have H(τf ) = 1 without
explicitly enforcing it. Indeed, the maximum principle by Pontryagin et al35 only requires
H(τf) > 0 for the minimum-time problem, which is already met by Eq. (14).
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9

Orbital Insertion Modes

As noted a few times earlier in the report, the orbital insertion conditions are specified in
terms of k equality constraints on the final state; More specifically, typical inertial insertion
conditions are defined by a subset of the six target orbital elements. This section will describe
several terminal Modes that specify various commonly seen launch missions. Another com-
ponent of this section is to show how the Lagrange multipliers in the transversality conditions
of the costate may be eliminated by manipulating the transversality conditions and orbital
insertion conditions cleverly. The elimination of these unknown multipliers has two major
advantages: first it reduces the number of unknowns needed to be found; more importantly,
it increases the algorithm convergence reliability significantly. The second point arises from
the fact that these multipliers have no physical meaning, and they may differ in magnitude
with that of the rest of variables considerably. Having to solve for these multipliers would
make the solution process more difficult in general.

In this section the final state and costate are denoted by

xf =

(
rf

V f

)
(1)

pf =

(
pVf

prf

)
(2)

9.1 Mode 31

This Mode consists of three orbital insertion conditions defined by the desired target orbital
element values for the semi-major axis a∗, eccentricity e∗, and inclination i∗. The ascending
node, true anomaly, and argument periapsis are considered free. Since the point of insertion
into the target orbit is not specified, this is a so-called free attachment Mode, and the final
flight path angle γf is unconstrained. When the insertion flight path angle is specified such
as γf = 0, thereby requiring the insertion point be at either the perigee or apogee of an
elliptic orbit, one additional constraint will be needed. (See Mode 43/44 below).

It should be noted that naming convention for the orbital insertion Modes is such that the
first digit (“3” in this case) indicates the number of orbital insertion constraints in each case.
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The second digit simply designate different different variation of orbital insertion conditions
while the number of constraints is the same.

A unit vector is constructed that relates the vehicle’s final position and velocity to the
target orbit inclination. Define a z-axis unit vector in the Earth Centered Inertial (ECI)
frame as

1NE =

⎡
⎣ 0

0
1

⎤
⎦ (3)

This vector transformed to the Guidance frame is given by

1NG = TEP 1NE (4)

where TEP is the transformation matrix as defined in section 2.4.

From orbital mechanics, the magnitude of the required final angular momentum vector
of the vehicle at the orbital insertion point is given by

h∗ =
√
a∗(1 − e∗2) (5)

Using the above expressions, the three orbital insertion conditions Ψ ∈ R3 can be written
as

1

2
(rf × V f)

T (rf × V f) − 1

2
h∗2 = 0 (6)

1

2
V f

T V f − 1

rf
+

1

2a∗
= 0 (7)

1NG
T (rf × V f ) − h∗ cos i∗ = 0 (8)

where rf = ‖rf‖.

Additional Terminal Conditions After Elimination of Lagrange Multipliers

The 6 transversality equations in Eqs. (25-26) in this contain 3 Lagrange multipliers
(ν ∈ R3):

prf
− (V f × hf ) ν1 − 1

rf
3
rfν2 − (V f × 1NG) ν3 = 0 (9)

pVf
+ (rf × hf) ν1 − V fν2 + (rf × 1NG) ν3 = 0 (10)

After using the conditions (6–8) and the transversality equations to eliminate the ν (the
algebraic manipulations are lengthy and thus not shown here), three additional terminal
conditions are resulted in:(

hf
T prf

) [
hf

T (rf × 1NG)
]
+
(
hf

T pVf

) [
hf

T (V f × 1NG)
]

= 0 (11)

rf
3V f

T prf
− rf

T pVf
= 0 (12)

prf

T (rf × V N) (rf × hf)
T (V f × rN) + pVf

T (V f × rN) (V f × hf)
T (rf × V N) = 0 (13)

where hf = rf ×V f is the angular momentum vector, rN = rf ×1NG, and V N = V f ×1NG.

57



9.2 Mode 41

Mode 41 consists of four orbital insertion conditions defined by the desired target orbital
element values for the semi-major axis a∗, eccentricity e∗, inclination i∗, and ascending
node Ω∗. The true anomaly and argument periapsis are considered free. This is also a free
attachment Mode in that the final flight path angle γf is unconstrained allowing the insertion
point to be located at any point on the target orbit.

A unit angular momentum vector of the desired target orbital plane is constructed from
the target inclination and ascending node. This vector, defined in the ECI frame is given as

1HE =

⎡
⎣ sin Ω∗ sin i∗

− cos Ω∗ sin i∗

cos i∗

⎤
⎦ (14)

This vector transformed to the Guidance frame is given by

1HG = TEP 1HE (15)

Again, the magnitude of the required final angular momentum vector of the vehicle at
the orbital insertion point is given by

h∗ =
√
a∗(1 − e∗2) (16)

Using the above expressions, the four orbital insertion conditions Ψ ∈ R4 can be written
as

rf × V f − hf
∗ = 0 ∈ R3 (17)

1

2
V f

T V f − 1

rf
+

1

2a∗
= 0 (18)

where rf = ‖rf‖ and hf
∗ = h∗1HG

Additional Terminal Conditions After Elimination of Lagrange Multipliers

The 6 transversality conditions involving the Lagrange multiplier vector ν ∈ R4 are now
given by

prf
+ skew (V f)

⎡
⎣ ν1

ν2

ν3

⎤
⎦− 1

rf
3
rfν4 = 0 (19)

pVf
− skew (rf )

⎡
⎣ ν1

ν2

ν3

⎤
⎦− V fν4 = 0 (20)

where skew(V f ) and skew(rf ) are the 3×3 skew matrices formed by the elements of V f and
rf , respectively. After much algebraic operation to eliminate ν from the above equations,
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we can have two additional terminal conditions free of ν:

prf

T V f − 1

rf
3
pVf

T rf = 0 (21)

prf

T (rf × hf
∗) + pVf

T (V f × hf
∗) = 0 (22)

9.3 Mode 43/44

This Mode involves four orbital insertion constraints defined by the desired target orbital
element values for the semi-major axis a∗, eccentricity e∗ inclination, i∗, and a final flight
path angle γf , which is set to zero. Therefore the insertion point is either at the perigee
(Mode 43) or apogee of the target orbit (Mode 44) and the final dimensionless position and
velocity are given by

r∗f = a∗(1 − e∗) (23)

V ∗
f =

√
1 + e∗

a∗(1 − e∗)
(24)

for the perigee and
r∗f = a∗(1 + e∗) (25)

V ∗
f =

√
1 − e∗

a∗(1 + e∗)
(26)

for the apogee.

A unit vector is constructed that relates the vehicle’s final position and velocity to the
target orbit inclination. Define a z-axis unit vector in the ECI frame as

1NE =

⎡
⎣ 0

0
1

⎤
⎦ (27)

This vector transformed to the Guidance frame is given by

1NG = TEP 1NE (28)

Using the above expressions, the four orbital insertion conditions Ψ ∈ R4 can be written
as

1

2
rf

T rf − 1

2
r∗f

2 = 0 (29)

1

2
V f

T V f − 1

2
V ∗

f
2 = 0 (30)

1NG
T (rf × V f ) − r∗fV

∗
f cos i∗ = 0 (31)

rf
T V f = 0 (32)
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Additional Terminal Conditions After Elimination of Lagrange Multipliers

The 6 transversality conditions involving the Lagrange multiplier vector ν ∈ R4 are now
given by

prf
− rfν1 − (V f × 1NG) ν3 − V fν4 = 0 (33)

pVf
− V fν2 + (rf × 1NG) ν3 − rfν4 = 0 (34)

Performing strategic dot and cross product operations on these conditions enables the
elimination of the multiplier vector ν ∈ R4. This results in 2 additional independent terminal
constraint equations free of the multipliers given by

V f
T prf

r∗f
2 − rf

T pVf
V ∗

f
2 = 0 (35)

[
(rf × V f)

T prf

] [
(rf × V f)

T (rf × 1NG)
]

+
[
(rf × V f)

T pVf

] [
(rf × V f )

T (V f × 1NG)
]

= 0 (36)

9.4 Mode 46

This Mode involves four insertion conditions defined by the desired final position magnitude
r∗f , velocity magnitude V ∗

f , inclination i∗, and flight path angle γ∗f which is not necessarily
zero. If values of r∗f , V

∗
f , and γ∗f are chosen properly, the orbital insertion point can be placed

anywhere in the orbit using this Mode. So Mode 43/44 is a special case to Mode 46.

Again, a unit vector is constructed that relates the vehicle’s final position and velocity
to the desired inclination. Define a z-axis unit vector in the ECI frame as

1NE =

⎡
⎣ 0

0
1

⎤
⎦ (37)

This vector transformed to the Guidance frame is given by

1NG = TEP 1NE (38)

The four resulting insertion conditions can be written as

1

2
rf

T rf − 1

2
r∗f

2 = 0 (39)

1

2
V f

T V f − 1

2
V ∗

f
2 = 0 (40)

1NG
T (rf × V f) − r∗fV

∗
f cos γ∗f cos i∗ = 0 (41)

rf
T V f − r∗fV

∗
f sin γ∗f = 0 (42)
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Additional Terminal Conditions After Elimination of Lagrange Multipliers

The 6 transversality cantons involving the Lagrange multiplier vector ν ∈ R4 are now
given by

prf
− rfν1 − (V f × 1NG) ν3 − V fν4 = 0 (43)

pVf
− V fν2 + (rf × 1NG) ν3 − rfν4 = 0 (44)

The 2 final manipulated additional terminal conditions free of the Lagrange multipliers are(
V f

T prf

)
r∗f −

(
rf

T pVf

)
V ∗

f + r∗fV
∗
f sin γ∗f

[
V f

T pVf
− rf

T prf

]
= 0 (45)(

hf
T prf

) (
hf

T rN

)
+
(
hf

T pVf

) (
hf

T V N

)
= 0 (46)

where hf = rf ×V f is the angular momentum vector, rN = rf ×1NG, and V N = V f ×1NG.

9.5 Mode 51

Mode 51 consists of five orbital insertion conditions defined by the desired target orbital
element values for the semi-major axis a∗, eccentricity e∗, inclination i∗, ascending node Ω∗,
and and a final flight path angle γf = 0. This is the Mode to be used for a launch-to-
rendezvous mission. The insertion point is at the perigee or apogee of the target orbit and
the final position and velocity are given again as

r∗f = a∗(1 − e∗) (47)

V ∗
f =

√
1 + e∗

a∗(1 − e∗)
(48)

for the perigee and
r∗f = a∗(1 + e∗) (49)

V ∗
f =

√
1 − e∗

a∗(1 + e∗)
(50)

for the apogee. As was done for Mode 41, a unit angular momentum vector of the desired
target orbital plane is constructed from the target inclination and ascending node and is
given as

1HE =

⎡
⎣ sin Ω∗ sin i∗

− cos Ω∗ sin i∗

cos i∗

⎤
⎦ (51)

This vector transformed to the Guidance frame is given by

1HG = TEP 1HE (52)
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Again, the magnitude of the required final angular momentum vector of the vehicle at
the orbital insertion point is given by

h∗ =
√
a∗(1 − e∗2) (53)

Using the above expressions, the five orbital insertion conditions Ψ ∈ R5 can be written
as

1

2
rf

T rf − 1

2
r∗f

2 = 0 (54)

1

2
V f

T V f − 1

2
V ∗

f
2 = 0 (55)

rf
T V f = 0 (56)

rf
T1HG = 0 (57)

V f
T1HG = 0 (58)

Additional Terminal Conditions After Elimination of Lagrange Multipliers

The 6 transversality conditions involving the Lagrange multiplier vector ν ∈ R5 are now
given by

prf
− rfν1 − V fν3 − 1HGν4 = 0 (59)

pVf
− V fν2 − rfν3 − 1HGν5 = 0 (60)

The final manipulated additional terminal condition free of the Lagrange multipliers is(
V f

T prf

)
r∗f

2 −
(
rf

T pVf

)
V ∗

f
2 = 0 (61)
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10

Combining Atmospheric and Vacuum
Algorithms

The endo-atmospheric and exo-atmospheric ascent guidance algorithms developed in the
preceding parts of this report must work together to produce a complete optimal ascent
trajectory from liftoff to orbital insertion. The challenge in this approach of combining
the atmospheric ascent algorithm with the vacuum ascent algorithm lies in the integration,
since the vacuum algorithm is not just a special case of the atmospheric algorithm with zero
atmospheric density. Instead of solving the entire problem with one algorithm, each of the
algorithms solves one part of an optimal control problem and the trajectories in each part are
then pieced together. This division, however, poses a unique problem for the atmospheric
ascent algorithm because the end conditions for the atmospheric portion of the ascent are
not defined a priori. Rather, they are a result of the final solution. For instance, the usual
multiple-shooting formulation at the junction point will have difficulty since two different
algorithms are at work, each covering only one part of the entire trajectory.

Our approach is to integrate the algorithms through the iteration on the state at the end
point τ1 of the first stage where the atmospheric algorithm stops and the vacuum algorithm
begins. Figure 15 illustrates the point. From a starting estimate of the state at τ1, the vacuum
algorithm generates an optimal trajectory to the target orbit and returns the corresponding
costate at τ1. The atmospheric algorithm in turn solves a TPBVP in which the initial state
is that at the lift-off and the final costate is the one just found by the vacuum algorithm at
τ1. This atmospheric ascent solution will provide a new state at τ1. The above process then
repeats until the states found at τ1 in two consecutive cycles are practically the same.

The algorithmic implementation of the above approach is given below. Starting from an
initial guess of the state at τ1, denoted by x

(0)
τ1 , our integration algorithm proceeds with the

iterations as follows:

1. Set k = 0.

2. With the known x
(k)
τ1 , the vacuum algorithm finds the optimal ascent trajectory in

(τ1, τf ), possibly including the coast, from x
(k)
τ1 to the targeting condition Eq. (8). As
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Figure 15: Integration of endo- and exo-atmospheric optimal trajectories

a part of the solution the vacuum algorithm returns the corresponding costate p
(k)
τ1 at

τ1.

3. The just obtained p
(k)
τ1 is used as the required boundary condition at τ1 for the costate

in the interval (0, τ1) for the atmospheric algorithm. The initial state at τ = 0 is
known. The TPBVP for the atmospheric algorithm is then well defined. Upon the
convergence of the algorithm, a new state at τ1 is found as a result, and this new state
is denoted as x̃(k+1)

τ1 .

4. If ||x̃(k+1)
τ1 −x

(k)
τ1 || ≤ δ for some pre-selected small constant δ > 0, set xτ1 = x̃(k+1)

τ1 , and
stop. Otherwise, let

x(k+1)
τ1

= εx̃(k+1)
τ1

+ (1 − ε)x(k)
τ1

(1)

where 0 < ε ≤ 1 is a constant. Set k = k + 1 and return to Step 2 above.

At the conclusion of the above process, both the state x and costate p are continuous at
τ1. All the necessary conditions for the optimal ascent problem are satisfied in [0, τf ]. In
other words, the solutions obtained for x(·) and p(·) in the two algorithms form a continuous
extremal for the complete optimal ascent problem.

The above search for the correct state xτ1 essentially constitutes a fixed-point problem.
Consider the case when ε = 1 in Eq. (1). We may represent the process of obtaining x̃(k+1)

τ1

based on x
(k)
τ1 by the mapping x̃(k+1)

τ1 = M(x
(k)
τ1 ). The above procedure therefore amounts to
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finding the solution to the fixed-point equation

xτ1 = M(xτ1) (2)

In this context, Eq. (1) with ε �= 1 simply is a modified fixed-point iteration in the form of

x(k+1)
τ1 = εM(x(k)

τ1 ) + (1 − ε)x(k)
τ1 (3)

Evidently the fixed-point solution to Eq. (3) for any ε �= 0 is the solution to Eq. (2) as well.
The introduction of an appropriate ε in Eq. (3) can aid the convergence of the fixed-point
iteration which may not always happen with ε = 1. A similar technique is discussed in Ref.37

In our application this technique has a geometric interpretation: an ε < 1 in the early cycles
of the iterations can prevent x

(k+1)
τ1 from departing too far from x

(k)
τ1 , an concurrence which

in some cases may result in the trajectory going through the Earth. Once x̃(k+1)
τ1 and x

(k)
τ1

are sufficiently close, an ε = 1 can be used to further speed up the convergence.

In fact, the need to solve the special endo-atmospheric TPBVP in Step 2 above inspires
another fixed-point formulation of this sub-problem, and consequently a fixed-point iteration
algorithm may be used to solve this particular problem. Appendix III provides some further
exposition on this aspect.
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11

V&V of Exo-Atmospheric Ascent
Guidance Algorithm

The objective in this section is to verify and validate the analytical multiple shooting (AMS)
exo-atmospheric ascent guidance algorithm developed here by comparing the solutions from
the algorithm to those obtained by using an industry standard trajectory optimization soft-
ware. Toward this purpose, 41 different mission scenarios are designed and tested with a
two-stage launch vehicle Model. All the orbital insertion Modes in Section 9 are tested. To
verify the results found by the AMS algorithm, an industry standard aerospace trajectory
optimization software, called Optimal Trajectories by Implicit Simulation29 (OTIS), is em-
ployed to compute the burn-coast-burn trajectory under the identical condition. Further
comparison is done with closed-loop simulated trajectories. In the closed-loop simulations,
the AMS algorithm serves as the guidance algorithm, generating the optimal exo-atmospheric
trajectory from the current state to the orbital insertion point at a guidance cycle of 1 Hz.
The actual trajectory is simulated by integrating Eqs. (1–3) with an inverse-square gravity
field. The optimal thrust direction and throttle command (full thrust or coast) are deter-
mined by the AMS algorithm. The closed-loop simulations are an ultimate check for the
validity of the open-loop solution found. If the closed-loop trajectory matches the open-loop
one closely, the approximations adopted in obtaining the open-loop solution are well justified.

11.1 Two-Stage Launch Vehicle

A two-stage vehicle configuration is used for the verification and validation of the analytical
multiple shooting (AMS) algorithm for burn-coast-burn vacuum ascent trajectory optimiza-
tion problem. The vehicle’s first stage is the so-called “Super X-33”. This is a vehicle Model
with all the data identical to those of the X-33, except that the specific impulse of the engine
is doubled. The second stage is the X-37 piggy-backed on the Super X-33. The launch
site for all test cases shown below is at Kennedy Space Center (KSC), (longitude=−80.85◦,
latitude=28.29◦). This information is necessary in establishing the Guidance inertial frame
for the launch as well as the required Guidance to ECI coordinate transformation. The com-
putation of the optimal first stage ascent trajectory through the atmosphere is divided into
two segments: the endo-atmospheric portion and the exo-atmospheric portion, separated at
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a given altitude around 90 km. The exo-atmospheric portion of the Super X-33 is regarded
as the first upper (vacuum) stage. After the burn-out of the X-33, the X-37 continues the
optimal ascent trajectory by first coasting for an optimal duration and then starting burn
of the X-37 until orbital insertion. Data used in the AMS algorithm for the Super X-33 and
X-37 are given below.

Table 4: Vehicle data of the first vacuum) stage of “Super X-33”
Thrust (vac) 2,303,000 N
Isp (vac) 711.395 sec
Empty weight 37,557 kg
Propellant weight 27,000 kg

Table 5: X-37 Data
Thrust (vac) 29,269 N
Isp (vac) 330 sec
Empty Weight 1,270 kg
Propellant Weight 3,628.74 kg
Payload Weight 544.31 kg

11.2 Mode 31 / 43 Comparisons

As mentioned previously, Mode 31 consists of three orbital insertion conditions defined by
the desired target orbital element values for the semi-major axis a∗, eccentricity e∗, and
inclination i∗. This is a free attachment Mode in that the final flight path angle γf is not
constrained. Mode 43 requires the same orbital insertion conditions as Mode 31 in addition
to constraining the final flight path angle to zero such that the insertion point is the perigee
of the target orbit. A set of test cases with target orbital insertion conditions as well as an
identical set for Mode 43 including the final γf = 0 constraint is given below in Table 6 . In
addition, three circular target orbits for Mode 43 are listed.

Results for Mode 31 and 43 test cases in Table 6 are listed in Table 7 and 8 respec-
tively. Recalling that the burn time of the first vacuum burn is fixed and determined from
propellant availability, the difference in converged second burn time directly translates into
the difference in deliverable payload mass, or vehicle performance. Both the second vacuum
burn time and mass are listed for convenience. In terms of vehicle performance, all methods
match quite closely and is very noteworthy in that OTIS is a direct approach using colloca-
tion, a very different method than the indirect AMS method that finds the trajectory based
on optimal control necessary conditions. Further, the extent to which the open-loop AMS
trajectory matches the full non-linear gravity closed-loop simulation driven by a current con-
dition open-loop AMS solution at each guidance cycle is reassuring. The small differences
in the open-loop AMS solution and the converged closed-loop simulation is to be expected
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Table 6: Mode 31 & 43 Target Orbits

Case Mode perigee alt. (km) e i (deg) γf (deg)
1 31 300 0.1 51.6 Free
2 31 500 0.1 51.6 Free
3 31 1000 0.1 51.6 Free
4 31 300 0.3 51.6 Free
5 31 500 0.3 51.6 Free
6 31 1000 0.3 51.6 Free
7 31 500 0.1 28.5 Free
8 31 500 0.3 28.5 Free
9 43 300 0.1 51.6 0.0
10 43 500 0.1 51.6 0.0
11 43 1000 0.1 51.6 0.0
12 43 300 0.3 51.6 0.0
13 43 500 0.3 51.6 0.0
14 43 1000 0.3 51.6 0.0
15 43 500 0.1 28.5 0.0
16 43 500 0.3 28.5 0.0
17 43 1000 0.0 51.6 0.0
18 43 500 0.0 51.6 0.0
19 43 500 0.0 51.6 0.0

and results from approximations made in the Analytical Multiple-Shooting problem formu-
lation such as the linear gravity approximation and thrust quadrature approximations for
each burn. During the coast phase the launch vehicle is trading kinetic energy for potential
energy. The higher the orbital insertion altitude, the longer the coast arc tends to be, and
the more critical is its length to the performance of the vehicle. Figures 16 and 17 show the
closed-loop altitude and velocity profiles along with their corresponding body axis pitch and
yaw angle time histories with respect to the guidance frame defined with a 2-3-1 rotation
sequence. The small yaw angles in figure 17 are due to the fact that the launch azimuth is
oriented in the direction defined by the target orbit inclination so as to minimize the yaw
maneuvers, a common practice in launch vehicle guidance. Some cases were found where,
depending on insertion conditions, higher altitudes did not always translate to a longer coast
arc, however, the presence of the optimized coast arc remains very significant to vehicle per-
formance.

The performance index on the final mass in the optimal burn-coast-burn problem appears
to be fairly insensitive to the coast time. Indeed, significant differences in the converged coast
time between OTIS and the AMS method does not result in significant differences in orbital
insertion mass. This disagreement in optimal coast times becomes much more noticeable for
higher altitude orbital insertions. The two methods do, however, find similar solutions for
the lower altitude orbits. These results are illustrated in Figures 18 and 19, which show the
altitude and velocity profiles for both OTIS and the closed-loop AMS simulation for cases
2 and 3. The small changes in insertion mass even for disproportionately large changes in
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coast time results in a “flat optimum” and it was found that direct methods such as OTIS
tend to converge to different solutions, most notably in the converged coast time, depending
on initial guess inputs. The AMS method, an indirect method, did not suffer from this
problem and was consistently able to converge to the same solution for the same case for
large changes in the initial guess.

An important comparison between all Mode 31 and the respective Mode 43 test cases is
seen from the value of the true anomaly at insertion. Mode 43 requires the insertion point
be the perigee of the resulting target orbit, which evident from the table is not always the
optimal insertion point. This result is consistent with both the AMS method and OTIS.
This is exemplified by test case 6 and 14 which results in a difference in second burn time of
approximately 5 seconds equating to a deliverable payload difference of 45.25 kg, a substantial
difference assuming payload mass of 500 kg. Figures 20 and 21 show the optimized ascent
trajectory and insertion target orbit for case 6. This illustrates the non-perigee optimal
insertion point and shows the true anomaly at insertion. Figure 21 is viewed in the direction
of the target orbit angular momentum vector allowing this to be seen easily.

Table 7: Mode 31 Results
Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

1
OTIS 24.6240 334.0512 2421.7212 7.43432
AMS 20.0371 334.3829 2416.8352 0.00000

AMS closed-loop 26.4927 331.7147 2438.4000 6.21815

2
OTIS 135.2167 345.9007 2314.5505 11.41668
AMS 126.1379 346.8496 2304.0113 0.00000

AMS closed-loop 134.5228 343.6698 2329.8000 11.13721

3
OTIS 293.8752 389.6641 1918.7385 10.29114
AMS 226.0024 390.5117 1908.8694 0.00000

AMS closed-loop 243.9442 388.0392 1922.5500 12.08240

4
OTIS 54.2115 386.7927 1944.7088 2.38447
AMS 43.9989 386.6586 1943.7401 0.00000

AMS closed-loop 53.1648 384.5900 1958.7500 1.29348

5
OTIS 152.4945 395.3354 1867.4451 6.08704
AMS 132.0432 396.0864 1858.4179 0.00000

AMS closed-loop 142.8387 393.3418 1877.3000 6.75834

6
OTIS 257.3082 427.3834 1577.5918 11.21645
AMS 207.8629 429.6897 1554.3082 0.00000

AMS closed-loop 226.6251 425.4743 1587.7000 12.72862

7
OTIS 129.0704 345.5416 2317.7982 12.07388
AMS 129.1712 345.9306 2312.3279 0.00000

AMS closed-loop 137.6387 342.7682 2338.8500 10.95298

8
OTIS 126.4071 394.4810 1875.1728 8.65202
AMS 135.5817 395.3242 1865.3161 0.00000

AMS closed-loop 146.4793 392.5993 1886.3500 6.55688
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Table 8: Mode 43 Results
Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

9
OTIS 34.1034 334.7211 2415.6628 0.00000
AMS 18.1730 334.3978 2416.6999 0.00001

AMS closed-loop 26.7410 331.8191 2438.4000 0.00688

10
OTIS 159.6698 346.2189 2311.6721 0.00000
AMS 120.9575 346.9562 2303.0468 0.00000

AMS closed-loop 130.6213 344.5979 2320.7500 0.05877

11
OTIS 307.5751 390.7985 1908.4785 0.00000
AMS 219.6417 390.9169 1905.2019 0.00001

AMS closed-loop 238.4151 390.0967 1904.4500 0.33734

12
OTIS 36.9882 387.9814 1933.9577 0.00000
AMS 35.0215 386.7056 1943.3146 0.00000

AMS closed-loop 50.0246 384.6953 1958.7500 0.01839

13
OTIS 166.2501 396.8354 1853.8786 0.00000
AMS 112.2931 396.3527 1856.0081 0.00000

AMS closed-loop 126.6136 394.5985 1868.2500 0.01075

14
OTIS 293.3618 431.1413 1543.6039 0.00000
AMS 187.5651 430.6763 1545.3795 0.00000

AMS closed-loop 206.4970 430.4641 1542.4500 0.06999

15
OTIS 170.3501 348.4420 2291.5658 0.00000
AMS 106.7140 350.5581 2270.4490 0.41001

AMS closed-loop 128.8965 346.3061 2302.6500 0.11132

16
OTIS 172.6211 397.0370 1852.0556 0.00000
AMS 115.9672 395.5898 1862.9119 0.00000

AMS closed-loop 130.4734 393.7107 1877.3000 0.08649

17
OTIS 27.7985 302.1463 2710.2808 N/A
AMS 21.4543 301.3659 2715.6387 N/A

AMS closed-loop 26.5988 298.4510 2737.0500 N/A

18
OTIS 174.1365 315.1391 2592.7694 N/A
AMS 132.5598 315.9119 2583.9970 N/A

AMS closed-loop 139.9287 313.4425 2601.3000 N/A

19
OTIS 319.0053 366.0883 2131.9660 N/A
AMS 240.3386 365.9951 2130.7439 N/A

AMS closed-loop 258.0000 365.2223 2130.7000 N/A
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Figure 16: Altitude and velocity profiles of the AMS closed-loop burn-coast-burn ascent
trajectories for cases 9-11
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Figure 17: Pitch and yaw angles along the AMS closed-loop burn-coast-burn ascent trajec-
tories with respect to the launch plumbline (guidance) frame for cases 9-11
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Figure 18: AMS and OTIS altitude and velocity comparison for case 2
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Figure 19: AMS and OTIS altitude and velocity comparison for case 3
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Figure 20: AMS closed-loop ascent trajectory and target insertion orbit for case 6

Perigee

Insertion Point Trajectory

ν = 12.789°

Figure 21: AMS closed-loop ascent trajectory and target insertion orbit illustrating true
anomaly at insertion for case 6
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11.3 Mode 41 / 51 Comparisons

Mode 41 consists of four orbital insertion conditions defined by the desired target orbital
element values for the semi-major axis a∗, eccentricity e∗, inclination i∗, and ascending node
Ω∗. This is a free attachment Mode in that the final flight path angle γf is not constrained.
Mode 51 requires the same orbital insertion conditions as Mode 41 in addition to constraining
the final flight path angle to zero such that the insertion point is the perigee of the target
orbit. Modes 41 and 51 are similar to Modes 31 and 43 respectively and differ only from
the additional constraint on the ascending node. This fixes the target orbital plane leaving
the only unknown the location of the perigee on the orbit. A set of test cases with target
orbital insertion conditions as well as an identical set for Mode 51 including the final γf = 0
constraint is given below in table 9 . In addition, three circular target orbits for Mode 51
are listed. This set of test cases is identical to those of 31 and 43 with the addition of a fixed
ascending node Ω∗. It should be noted that for the initial conditions used for all test cases
in this work, target orbits with unconstrained ascending nodes converge to approximately
255◦ for inclinations of 51.6◦ and 185◦ for inclinations of 28.5◦.

Table 9: Mode 41 & 51 Target Orbits

Case Mode perigee alt. (km) e i (deg) γf (deg) Ω (deg)
20 41 300 0.1 51.6 Free 250
21 41 500 0.1 51.6 Free 250
22 41 1000 0.1 51.6 Free 250
23 41 300 0.3 51.6 Free 250
24 41 500 0.3 51.6 Free 250
25 41 1000 0.3 51.6 Free 250
26 41 500 0.1 28.5 Free 180
27 41 500 0.3 28.5 Free 180
28 51 300 0.1 51.6 0.0 250
29 51 500 0.1 51.6 0.0 250
30 51 1000 0.1 51.6 0.0 250
31 51 300 0.3 51.6 0.0 250
32 51 500 0.3 51.6 0.0 250
33 51 1000 0.3 51.6 0.0 250
34 51 500 0.1 28.5 0.0 180
35 51 500 0.3 28.5 0.0 180
36 51 1000 0.0 51.6 0.0 250
37 51 500 0.0 51.6 0.0 250
38 51 500 0.0 51.6 0.0 250

Results for Mode 41 and 51 test cases in table 9 are listed in table 10 and 11 respectively.
Again, both the second vacuum burn time and mass are listed for convenience. In terms of
vehicle performance, all methods match quite closely as was the case for Modes 31 and 43.
The open-loop AMS trajectory continues to match the full non-linear gravity AMS closed-
loop simulation which is evidence the AMS method has no problem handling the additional
constraint on the problem. For Modes 31 and 43 it was seen that for higher orbital insertion
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altitudes, the longer the coast arc tends to be, and the more critical is its length to the
performance of the vehicle. This trend is again seen for Mode 51 wherein the insertion point
must be the perigee of the target orbit. However, from the results in table 10, longer coast
arcs for higher insertion altitudes is not the typical outcome for Mode 41. This is explained
by the variation of optimal insertion points found in terms of the true anomaly at insertion
in addition to the unconstrained target orbit perigee direction which can be much different
from the corresponding Mode 51 cases.

The ascending node constraint enforced in Modes 41 and 51 appears to be the dominate
constraint. Enforcing the ascending node constraint Ω in addition to the semi-major axis
a, eccentricity e, and inclination i fully defines the target orbital plane leaving the only un-
known the perigee direction. It can be seen from table 9 that the target orbit ascending node
for Modes 41 and 51 are set at approximately a 5◦ offset from their natural unconstrained
converged values for the initial conditions used in this work. Enforcing this constraint has a
very noticeable impact on vehicle performance. Every Mode 41 and 51 case results in a sig-
nificantly lower final mass than the corresponding Mode 31 and 43 case as shown in tables 10
and 11. Constraining the ascending node to the values in table 9 forces the launch vehicle to
make substantial out of plane maneuvers during ascent to align itself with the target orbital
plane. These out of plane maneuvers require longer second burn times causing a significant
decrease in final vehicle mass at insertion. For Modes 31 and 43 it was shown (see Fig. 17)
that the yaw angle is generally very small during the ascent due to the initial launch azimuth
direction. Expensive out of plane maneuvers result in much larger yaw angles during the
ascent as illustrated in Figure 23 with a comparison of case 33 and corresponding case 14.
Figure 22 shows the altitude and velocity profiles for these cases. As seen in the figures,
both cases have very similar velocity and altitude profiles. In case 33, however, the large
yawing motion during the ascent results in a longer second burn time by approximately 7
seconds translating into a final mass reduction of approximately 63 kg. Further verifying
these results, Figures 24 and 25 show two views of the optimized trajectory and target
insertion orbit for Mode 41 test case 25. Again, easily seen from the figures, the launch ve-
hicle performs substantial yawing maneuvers to align and insert itself into the desired target
orbit. These results are consistent for both the AMS method and OTIS.

Similar to Modes 31 and 43, the performance index on the final mass in the optimal
burn-coast-burn problem continues to be fairly insensitive to the coast time. Significant
differences in the converged coast time between OTIS and the AMS method does not re-
sult in significant differences in orbital insertion mass. This disagreement in optimal coast
times is again more noticeable for higher altitude orbital insertions. The small changes in
insertion mass for disproportionately large changes in coast time is in part due to the “flat
optimum” characteristics of the optimal ascent problem as mentioned previously. Further
understanding of the terminal Mode constraints can help explain this “flat optimum” most
often resulting in optimal coast time disagreement between the AMS and OTIS methods.
Is is to be noted and understood that the desired target orbits are not fully defined. Mode
41 and 51 does fix the target orbital plane as mentioned, but does not constrain the perigee
location. Given this, for any test case the AMS and OTIS methods may not insert into the
same orbit and in general they will not, however, both satisfy the terminal constraints at
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insertion. This freedom helps explain why both methods can agree in terms of vehicle perfor-
mance even with substantial disagreement in optimal coast time. This can be demonstrated
by analyzing a Mode 51 case wherein the orbital plane and insertion point on the orbit are
fixed. Figure 26 shows the AMS and OTIS trajectories and insertion orbits for Mode 51
case 33. Both insertions must be at the perigee of the target orbit, and from table 11, it is
seen that the optimized coast arc for the OTIS trajectory is substantially longer that that
found by the AMS method. For this reason, it is expected that the OTIS insertion point be
somewhat downrange of the AMS insertion and indeed this is the result. Figure 27 illustrates
the “flat optimum” characteristic of the problem, again for case 33, by sweeping the coast
time over a 200 second window bracketing the original converged coast times found by both
the OTIS and AMS methods. As can be seen from figure, the variation in final burn time
is very insensitive to the coast duration in this range. Discussed above, the only remaining
unconstrained orbital insertion parameter is the argument of perigee, the variation of which
is also shown in the figure. Easily seen from the figure, increasing the coast time simply
pushes the perigee direction and insertion point further downrange from the launch site, and
visa versa.

In regards to the solutions obtained from OTIS, a few comments should be noted. In
many cases, adjusting the guessed final burn time values was required to obtain the optimal
solution found. Further change of these values could prevent OTIS from retrieving the same
solution, or in some situations even a similar solution. It was observed that adjusting the
coast and or final burn time bounds would additionally have a significant impact on the
converged solution. This prevented obtaining a sweep solution simply by adjusting the coast
time duration while leaving all other parameters unchanged. In addition, scaling of problem
parameters highly influenced convergence rates and final solutions. It is recognized that OTIS
is a very general trajectory optimization software allowing for much user configuration, hence
and a more complete knowledge of its proper use in regards to this specific problem may
have relieved some of these issues.
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Table 10: Mode 41 Results
Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

20
OTIS 259.9649 351.9201 2260.1084 28.88764
AMS 219.0324 352.1562 2255.9867 20.38100

AMS closed-loop 231.6762 349.9753 2275.5000 19.04381

21
OTIS 270.9058 361.7805 2170.9273 11.64281
AMS 191.2724 363.3863 2154.3536 0.98688

AMS closed-loop 204.5619 364.9046 2139.7500 1.61218

22
OTIS 299.9342 398.2460 1841.1204 8.97000
AMS 211.8645 401.6461 1808.1027 10.88184

AMS closed-loop 227.6674 400.0388 1813.9500 12.15001

23
OTIS 265.5381 399.2454 1832.0815 10.57011
AMS 210.3717 397.9093 1841.9211 6.07592

AMS closed-loop 227.1023 396.1889 1850.1500 5.03092

24
OTIS 222.2749 407.0645 1761.3633 2.34400
AMS 158.6010 407.3729 1756.2756 3.49641

AMS closed-loop 174.9292 404.9382 1777.7500 4.93180

25
OTIS 285.9631 442.5412 1440.4989 11.85391
AMS 149.9988 438.8672 1471.2519 11.49603

AMS closed-loop 164.2296 436.9191 1488.1500 14.74207

26
OTIS 130.6578 345.4328 2318.7820 12.48016
AMS 88.9099 346.4386 2307.7307 12.04604

AMS closed-loop 94.3723 343.9121 2329.8000 15.26107

27
OTIS 219.2165 396.1688 1859.9077 0.00000
AMS 15.7832 396.0942 1858.3475 12.37148

AMS closed-loop 21.0860 393.6329 1877.3000 16.89375
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Table 11: Mode 51 Results
Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

28
OTIS 188.2341 356.1665 2221.7026 0.23231
AMS 168.6447 356.3202 2218.3019 0.00000

AMS closed-loop 177.0205 354.2091 2230.2500 0.16114

29
OTIS 228.3949 366.3698 2129.4199 0.22885
AMS 188.8833 363.5015 2153.3116 0.00001

AMS closed-loop 198.4591 361.0573 2166.9000 0.01260

30
OTIS 326.8909 398.5508 1838.3637 0.22111
AMS 230.6249 401.1288 1812.7843 0.00001

AMS closed-loop 248.3052 399.9408 1823.0000 0.02116

31
OTIS 182.9739 399.9333 1825.8598 0.19379
AMS 170.6421 399.4623 1827.8661 0.00000

AMS closed-loop 182.1409 397.6953 1841.1000 0.03067

32
OTIS 235.0993 405.9083 1771.8204 0.14380
AMS 180.8982 405.2135 1761.5226 0.00000

AMS closed-loop 193.6338 404.8655 1777.7500 0.00441

33
OTIS 317.0431 438.8030 1474.3089 0.13850
AMS 201.6559 437.9284 1479.7483 0.00000

AMS closed-loop 220.8111 437.2554 1479.1000 0.09196

34
OTIS 151.4102 347.6747 2298.5052 0.22882
AMS 122.5030 346.2990 2308.9943 0.00000

AMS closed-loop 132.1887 343.9411 2329.8000 0.00545

35
OTIS 158.9689 397.0465 1851.9692 0.14366
AMS 114.0376 395.8322 1860.7183 0.00000

AMS closed-loop 128.4066 394.1371 1868.2500 0.00323

36
OTIS 200.4568 330.3483 2455.2113 N/A
AMS 171.1778 330.8833 2448.5065 N/A

AMS closed-loop 178.0483 328.7342 2465.5500 N/A

37
OTIS 159.8574 339.3094 2374.1639 N/A
AMS 196.6761 337.2291 2391.0771 N/A

AMS closed-loop 204.6825 334.6980 2411.2500 N/A

38
OTIS 337.8690 380.0354 2005.8236 N/A
AMS 248.9145 378.2907 2019.4688 N/A

AMS closed-loop 265.7263 377.1271 2022.1000 N/A
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Figure 22: Altitude and velocity profiles of the AMS closed-loop burn-coast-burn ascent
trajectories for cases 14 and 33
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Figure 23: Pitch and yaw angles along the AMS closed-loop burn-coast-burn ascent trajec-
tories with respect to the launch plumbline (guidance) frame for cases 14 and 33
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Figure 24: View 1: AMS closed-loop ascent trajectory and target insertion orbit for case 25
illustrating large out of plane motion (orbit shading for visual convenience)
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Figure 25: View 2: AMS closed-loop ascent trajectory and target insertion orbit for case 25
illustrating large out of plane motion (orbit shading for visual convenience)
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Figure 26: AMS closed-loop and OTIS ascent trajectories and orbital insertion perigee di-
rection for case 33
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Figure 27: OTIS coast time sweep for case 33
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11.4 Mode 46 Results

Mode 46 involves four insertion conditions defined by the desired final position magnitude
r∗f , velocity magnitude V ∗

f , inclination i∗, and flight path angle γ∗f . This Mode is unlike
the others in that it is not defined from typical orbital elements and the conditions need
not represent values on any target orbit. Rather, this Mode provides the ability to define a
desired launch abort energy condition where, if met, the launch vehicle can glide unpowered
if necessary to a determined landing site. Conditions for three cases are listed in table 12.

Table 12: Mode 46 Target Orbits

Case Mode altitude (km) velocity (m/s) i (deg) γf (deg)
39 46 122 7500 51.6 -1
40 46 122 7500 51.6 -2
41 46 100 7000 40 -1

The results for these three cases are listed in table 13. All methods agree closely, both in
optimized coast length and final burn time, however the OTIS trajectories have somewhat
lager second burn times resulting in reduced final mass. The initial conditions used for these
cases are the same as all previous cases and are conditions taken from a typical ascent. This
results in a higher initial altitude than would most likely be experienced in an abort scenario,
thus increasing the convergence difficulty. Figure 28 shows both the AMS and OTIS altitude
and velocity profiles as well as the flight path angle time histories for case 40.

Table 13: Mode 46 Results
Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg)

39
OTIS 0.9908 272.5345 2978.1001
AMS 0.0000 267.9072 3018.4401

AMS closed-loop 0.1315 265.6799 3035.7000

40
OTIS 0.3931 267.7783 3021.1169
AMS 0.1763 263.2835 3060.2844

AMS closed-loop 0.0392 260.8845 3080.9500

41
OTIS 0.9037 226.0943 3398.1224
AMS 0.0007 222.9545 3425.2613

AMS closed-loop 0.0318 221.4846 3433.9000
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Figure 28: AMS and OTIS altitude, velocity, and flight path angle profile comparison for
case 40
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12

Evaluating the Complete Ascent
Guidance Algorithm

In this part the endo-atmospheric and exo-atmospheric ascent guidance algorithms are com-
bined to generate complete optimal ascent trajectories and guide the vehicle from liftoff to
orbital insertion. To demonstrate the applicability of the algorithms to both winged launch
vehicles and conventional axisymmetric launch vehicles, a two-stage winged fully reusable
launch vehicle model and the Ares I Crew Launch Vehicle (CLV) currently under develop-
ment by NASA are used. The launch site is at KSC. For testing purposes 114 different wind
profile pairs are used which are based on measurement data at KSC in February. These
wind profiles are generated by the Natural Environments Branch at NASA Marshall Space
Flight Center. Each profile provides altitude-dependent wind speed and direction. The
first of each pair is a smoothed (filtered) profile of measured wind data; the second is un-
filtered and measured on average 2 hours later. The smoothed profile in each pair is used
in the guidance solution, and the unfiltered profile is used in simulation of the trajectory.
In Monte Carlo simulations the wind pair is uniformly randomly selected for a trajectory to
simulate the “day-of-launch wind”. In addition, various environmental and vehicle modeling
uncertainties are added in the simulations. But no navigation dispersions are considered in
the simulations. In each simulation, the guidance is given only the nominal models of the
vehicle and atmosphere, and the smoothed (and two-hour earlier) profile of the randomly
selected “day-of-launch” wind profile. No additional guidance I-loads are adjusted from one
trajectory to another, and no pre-launch guidance computation or update is performed.

12.1 Application to Two-Stage Winged Reusable Launch

Vehicle

The vehicle is a two-stage winged fully reusable launch vehicle similar to what is shown in
Fig. 29. The first stage has 4 engines, and second stage has one. Some of the basic data for
the vehicle are given in Table 14.

The target orbit data are given in Table 15. No other inequality trajectory constraints are
enforced. In addition to the randomly selected winds, other dispersions used in the Monte
Carlo simulations are summarized in Table 16.
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Figure 29: Two-stage winged fully reusable launch vehicle

Table 14: Vehicle data of the two-stage reusable launch vehicle
Parameter First Stage Second Stage
Vacuum thrust 4 × 2, 086, 883 N 990,280.0 N
Isp 335.0 sec 350.0 sec
Initial mass 574,023 kg 93,725kg
Empty mass 96,807.3 kg 17,190.8 kg
Propellant mass 382,671.0 kg 76,534.0 kg

The dispersions listed in Table 16 are some of the representative dispersions commonly
used in launch simulations. The main objective in this section is to evaluate the robustness
of the ascent guidance algorithm in the inevitable presence of winds and these appreciable
dispersions. For the algorithm to qualify to be considered for on-board applications, it must
be able to ensure convergence in the face of such dispersions without any knowledge of them.
Also to be demonstrated is the potential for automated closed-loop ascent guidance without
any case-dependent guidance I-load update, which is a key requirement for responsive launch,
by showing that the algorithm can correctly guide the vehicle to the desired orbit in every
simulation by simply “pushing the ignition button”.

A total of 200 Monte Carlo simulations are shown in Figs. 30–36. Figures 30 and 31

Table 15: Target orbit for the 2-stage RLV (launch from KSC)
Orbit Parameter i (deg) e altitude (km) ascending node (deg)
Value 49.1 0.0 200.0 -107.5
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Table 16: Dispersions used in Monte Carlo simulations for the two-stage RLV (all Gaussian
distributions)

Parameter Dispersion Mean one-sigma value
Liftoff mass 5,740,234.5 kg 1,912.2 kg
Mass at first stage burnout 202,379.1 kg 674.5 kg
Mass flow rate for first stage -2,547.6 kg/sec 8.5 kg/sec
Vacuum thrust for first stage 834,711.6 N 2,3803.5 N
Mass flow rate for second stage -289.2 kg/sec 0.96 kg/sec
Thrust for second stage 990,280.0 N 2,823.8 N
Scaling factor for dispersions in aero coefficient CA 0.0 0.0333333
Scaling factor for dispersions in aero coefficient CN 0.0 0.0333333

depict the geodetic altitude and inertial velocity along these dispersed trajectories. From the
figures it is evident that all the trajectories reach the specified orbit successfully, even though
we will leave the examination of the actual orbital insertion statistics to the next section.
The profiles of angle of attack profiles are plotted in Fig. 32. The initial large variations of α
are caused by the fact the earth-relative velocity is very small right after liftoff. Any winds
will cause large changes in the direction of the relative velocity. The vehicle flies a heads-up
configuration so after liftoff α is largely positive in endo-atmospheric ascent portion. The
pitch and yaw angle profiles of the vehicle with respect to the NDE frame are illustrated in
Figs. 33 and 34. Finally the variations of the dynamic pressure q and the product α− q are
shown in Figs. 35 and 36. Note that since neither is constrained, they reached quite large
values, especially for αq.
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Figure 30: Geodetic altitude profiles along 200 dispersed RLV ascent trajectories
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Figure 31: Inertial velocity profiles along 200 dispersed RLV ascent trajectories
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Figure 32: Anlgle of attack profiles along 200 dispersed RLV ascent trajectories
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Figure 33: Pitch angle profiles along 200 dispersed RLV ascent trajectories
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Figure 34: Yaw angle profiles along 200 dispersed RLV ascent trajectories
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Figure 35: Dynamic pressure profiles along 200 dispersed RLV ascent trajectories
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Figure 36: Dynamic pressure profiles along 200 dispersed RLV ascent trajectories
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12.2 Application to Ares I Crew Launch Vehicle

12.2.1 The Ares I CLV

The Ares I CLV is a two-stage vehicle currently under development that will carry the Orion
Crew Exploration Vehicle (CEV) to the International Space Station (ISS). Figure 37 shows
its conventional, axisymmetric configuration. The first stage of the Ares I vehicle is a five-
segment solid rocket booster (SRB) derived from the Shuttle Solid Rocket Booster (SRB).
The vacuum thrust profile and mass flow rate of the SRB have a quite strong dependence
on time since ignition, and cannot be approximated by constants, as seen in Figs. 38 and 39.
The second stage engine is a Saturn J-2 derived liquid engine, dubbed J-2X. Its thrust and
mass flow rate are treated as constants in guidance. Other vehicle parameters are given in
Table 17. The aerodynamic coefficients of the vehicle used for guidance solution are smooth
curve fittings to tabulated data as functions of Mach number and angle of attack. The
vehicle’s gross liftoff weight is on the order of 2 million lbs with a payload capacity of 25
metric tons.

Figure 37: The Ares I Crew Launch Vehicle
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Figure 38: The vacuum thrust profile of the Solid Rocket Booster

Table 17: Vehicle data for the Ares I CLV
Parameter First Stage Second Stage
Vacuum thrust 13,964 kN at 0.7 sec 2,088 kN
Vacuum Isp 268.8 sec 452.1 sec
Initial mass 586,344 kg 93,725 kg
Empty mass 81,818 kg 20,422 kg
Propellant mass 504,516 kg 163,530 kg

The International Space Station (ISS) mission target orbit for Ares I is a −11 × 100
nm orbit (with an eccentricity of 0.0159) at the inclination of 51.6 degrees. The insertion
altitude into this orbit is specified at 70 nm. The CEV will use its own propulsion to reach
the ISS orbit after separating from Ares I. The orbital insertion conditions are summarized
in the Table below

Table 18: Ares I orbital insertion condition for ISS mission (launch from KSC)
Orbit Parameter i (deg) e altitude (nm) γ (deg)
Value 51.6 0.0159 70.0 0.8091

where γ is the inertial flight path angle at orbital insertion.

On the launch pad at the Kennedy Space Center (KSC), the Ares I is positioned with
crew window facing due east. It will take about 6 seconds for the vehicle to vertically ascend
to clear the tower, so at 6 seconds from liftoff, the vehicle begins to maneuver toward gravity
turn. At t2 = 20 seconds from liftoff, the vehicle enters near gravity turn. The closed-loop
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Figure 39: The vacuum mass rate profile of the Solid Rocket Booster

guidance update rate is 1 HZ while the trajectory simulation is performed at 100 HZ. For
nominal mission design (no wind) a constraint of

αtq ≤ 500 (psf-deg) (1)

is imposed, where αt is the total angle of attack, the angle between the wind-relative velocity
and the longitudinal body axis of Ares I. In the presence of winds and other dispersions, the
guidance is required to maintain the constraint

αtq ≤ 3000 (psf-deg) (2)

This constraint is critically important for Ares I because of its long slender configuration
(about 200 m in length). For the structural integrity of Ares I during the ascent through
the atmosphere, the bending moment due to aerodynamic forces must be kept within design
bounds. The quantity αtq is direct measure of the aerodynamic bending moment.

In addition to the dispersions listed in Table 19, altitude-dependent atmospheric den-
sity and pressure dispersions from the values from the 1976 US Standard Atmosphere are
generated from an in-house model and used in the simulations (which are unknown to the
guidance). The model can produce randomized atmospheric dispersions based on location,
altitude, and season. While much simpler than NASA’s GRAM-2007 atmospheric model
in Ref. 40, this model produces quantitatively similar atmospheric dispersions as those by
GRAM-2007.

12.2.2 Nominal Mission

All the results presented here are from closed-loop 3DOF simulations. First the nominal as-
cent without wind and other dispersions added is examined. Two cases are compared. One
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Table 19: Dispersions used in Monte Carlo simulations for the Ares I CLV (Gaussian distri-
butions unless indicated otherwise)
Parameter Dispersion Mean one-sigma value
Dispersion scaling factor for mass flow rate for SRB 0.0 0.3333%
Dispersion scaling factor for vacuum thrust for SRB 0.0 0.3333%
Dispersion scaling factor for vacuum thrust for J2-X 0.0 0.2667%
J2-X specific impulse 452.1 sec 0.73333 sec
Mass flow rate for J2-X see above see above
Scaling factor for dispersions in aero coefficient CA N/A ±1%
Scaling factor for dispersions in aero coefficient CN N/A ±1%
*The dispersion scaling factors for CA and CN are in uniform distributions within ±1%.

is fully constrained, subject to (1). The other is freely optimized after the vertical ascent
at t1 = 6 sec, without any additional load or path inequality constraints. Figure 40 shows
the angle of attack profiles for the two trajectories. The solid line is for the constrained
trajectory. It can seen that the α profile is qualitatively very similar to that of the α in Ref.
citeDukeman2 which is optimized off-line and essentially the same as the result obtained
from POST.42 On the other hand, the unconstrained optimal trajectory flies an α of ap-
proximately 5 degrees ( about 10 times that of the constrained one). The corresponding
αtq and dynamic pressure q during the first stage are plotted in Fig. 41. It is seen that the
unconstrained trajectory experiences a peak αtq of 6000 psf-deg, 12 times that along the
constrained trajectory. The penalty for flying this highly constrained trajectory is about
0.9% less of mass delivered, which amounts to 430 kg. This is quite remarkable, considering
the severity of the constraint. This achievement demonstrates the effectiveness of the guid-
ance optimization in the short period of [t1, t2] = [6, 20]. Without these initial maneuvers
properly optimized, one could easily end up with the constrained trajectory suffering up to
15% − 20% performance penalty. Figure 42 shows the comparison of the Euler angles of
the vehicle’s body axes during the ascent. These angles are with respect to the North-East-
Down (NED) coordinate system at the launch site, in the standard yaw-pitch-roll rotation
sequence. Not surprisingly, the optimal yaw angle found is practically constant and only
about 2.5 degrees different from the usual launch azimuth

ψaz = sin−1

(
cos i

cos φc

)

where i is the target orbit inclination and φc the geocentric latitude of the launch site. Figure
11 illustrates the altitude and velocity profiles of the nominal ascent with and without the
αtq constraint (1).

12.2.3 Monte Carlo Simulations

Next, 500 dispersed trajectories are simulated with the dispersions and randomly selected
KSC winds described earlier. In each simulation, the guidance is given only the nominal
models of the vehicle and atmosphere, and the smoothed (and two-hour earlier) profile of
the randomly selected “day-of-launch” wind profile. No additional guidance I-loads are

95



0 100 200 300 400 500 600
−30

−20

−10

0

10

time (sec)

α 
(d

eg
)

 

 

0 20 40 60 80 100 120
−15

−10

−5

0

5

time (sec)

1s
t s

ta
ge

 α
 (

de
g)

α
t
−q constrained

unconstrained

Figure 40: Angle of attack along nominal Ares I optimal ascent trajectories: top figure: the
complete α profile (stage 1 and 2); bottom figure: α for the first stage

adjusted from one trajectory to another, and no pre-launch guidance computation or update
is performed. Upon ignition, the CLV rieses for 6 seconds to clear off the launch tower. At
this instant, the optimal closed-loop guidance described in this report takes over and steers
the vehicle through the separation of the SRB, firing of the J2-X to the orbital insertion.

The statistics on the final (orbital insertion) conditions are listed in Table 20. Also in-
cluded in the Table 20 are the statistics of the peak values of αtq along all these trajectories.
The data in the table clearly demonstrate accurate orbital insertion conditions and quite
consistent performance in terms of injected mass. Figure 44, in which the geodetic altitude,
inertial velocity and inertial flight path angle along the 500 dispersed trajectories are plot-
ted, confirms the successful orbital insertion in all cases. The high accuracy of the orbital
insertion conditions seen in the Table suggests that if navigation errors are included, the
orbital insertion errors will be on the same order as that of the navigation errors. This high
accuracy, though, should be viewed in the context that no effects of the uncertainty caused
by “tailoff thrust” of the J2-X engine are included when it is commanded to shut off. Such
an uncertainty can cause, for instance, the error of a few nautical miles in semi-major axis
of the final orbit. Again, one of the most critical concerns during atmopheric ascent is the
bending moment in the presence of the winds. The first subplot of Fig. 45 shows that the
closed-loop guidance strategy is able to keep the angle of attack small throughout the flight
of the first stage. The statistics on peak αtq are reassuring in that the highest value is about
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Figure 41: αt-q̄ and dynamic pressure q̄ along the nominal Ares I optimal ascent trajectories
of the first stage

2800 psf-deg, below the desired level of 3000 psf-deg. In fact, the data suggest that the
3-sigma value of the peak αtq is at about 2300 psf-deg. A closer examination of the data
reveals that the peak value of 2800 psf-deg occurred in only two trajectories, both with the
same wind profile. This is a case when the wind is relatively strong and the measured wind
data used by the guidance differs considerably from the wind encountered in ascent. The
second subplot in Fig. 45 clearly shows the same conclusion.

The Euler angles (pitch, yaw and roll) of the vehicle body axes with respect to the launch
NED frame during the endo-atmospheric ascent portion (which lasts about 120 seconds)
along the 500 trajectories are depicted in Fig. 46. The complete pitch and yaw angle for
both stages of the Ares I in all the dispersed trajectories are plotted in Fig. 47. Note that
the roll angle in exo-atmospheric flight is immaterial because it does not affect the direction
of the thrust vector(thus roll angle is not shown in Fig. 47), whereas in endo-atmospheric
flight the roll angle affects the sidelslip angle, hence the total angle of attack αt.

97



0 100 200 300 400 500 600
−50

0

50

100

time (sec)

pi
tc

h 
(d

eg
)

 

 

0 100 200 300 400 500 600
40

60

80

100

time (sec)

ya
w

 (
de

g)

0 20 40 60 80 100 120
−200

0

200

time (sec)

1s
t s

ta
ge

 r
ol

l (
de

g)

α
t
−q constrained

unconstrained

Figure 42: Euler angles along nominal Ares I optimal ascent trajectories

Table 20: Statistics of 500 dispersed trajectories: orbital insertion conditions and peak αtq
(where a= semi-major axis, e=eccentricity)

mean std. deviation maximum minimum

rf (m) 6,507,775.52 0.56 6,507,776.95 6,507,773.02
Vf (m/s) 7,797.74 0.10 7,798.02271 7797.34
γf (deg) 0.8089 0.0061 0.82364 0.7832
i (deg) 51.60001 0.00001 51.60007 51.59994
a (m) 6,460,810.91 165.29 6,461,273.58 6,460,149.90
e 0.01588 0.0001 0.01611 0.01549
mf (kg) 45,827.58 336.45 46,588.25 44,490.092
peak αtq (psf-deg) 1,362.44 327.91 2,827.64 705.82
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Figure 43: Altitude and velocity along nominal Ares I optimal ascent trajectories
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Figure 44: Geodetic altitude, inertial velocity and inertial flight path angle along 500 dis-
persed ascent trajectories of Ares I
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Figure 45: Variations of first-stage α and αtq along 500 dispersed ascent trajectories of Ares
I
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Figure 46: Variations of first-stage Euler angles along 500 dispersed ascent trajectories of
Ares I
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Figure 47: Variations of pitch and yaw angles (of both stages) along 500 dispersed ascent
trajectories of Ares I
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Appendix A

Costate Equations for 3D Endo-Atmospheric Optimal Ascent

The notation used in the following is the same as defined in Sections in Part ?? of this
report. Let ρr = ∂ρ/∂r, Tr = ∂T/∂r, Cρ = ρ0ρSrefR0/m(t), and

Aρr =
V 2

r SrefR0ρ0CAρr

2m(t)
, Nρr =

V 2
r SrefR0ρ0CNρr

2m(t)
,

CAα = ∂CA/∂α, CNα = ∂CN/∂α,

CAMach
= ∂CA/∂Mach, CNMach

= ∂CN/∂Mach,

apvb = pT
V 1b = pV cos(Φ − α), apvn = pT

V 1n = pV sin(Φ − α)

Denote the altitude-dependent speed of sound by Vs(r). The complete costate equations (22)
and (23), after much vector differentiation and simplification, are given by

p′
r =

1

r3
pV −

[
3apvb

r4
+ apvb

(
Tr −Aρr +

1

2Vr
CρV

2
s CAMach

∂Vs

∂r

)

+ apvn

(
Nρr − 1

2Vr

CρV
2
s CNMach

∂Vs

∂r

)]
r

r

+ Cρω̄E ×
{
apvb

[
(CA +

1

2Vr
VsCAMach

)V r +
1

2
CAαV

2
r

∂α

∂V

]

− apvn

[
(CN +

1

2Vr
VsCNMach

)V r +
1

2
CNαV

2
r

∂α

∂V

]}
(3)

p′
V = −pr + Cρ

[
apvb(CA +

1

2Vr

VsCAMach
) − apvn(CN +

1

2Vr

VsCNMach
)

+
1

2
(apvbCAα − apvnCNα)

cosα

sinα

]
V r − CρVr

2 sinα
(apvbCAα − apvnCNα)1b (4)

where from the first equation in Eq. (7) and V r = V − ω̄E × r − V w

∂α

V
=

1

Vr sinα
(cosα1Vr − 1b) (5)

Note that the costate equation (3) has been simplified by recognizing that

(1b1
T
b + 1n1

T
n − I3)pV = 0 (6)

because 1b, 1n and pV are in the same plane in the optimal solution, and 1b and 1n are unit
vectors that are orthogonal to each other.
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Appendix B

Jacobians of Thrust Integrals

In the numerical solution of the burn-coast-burn problem in this report, the Jacobian of
the constraint vector in Eq. (34) can be analytically obtained. While much of it just requires
standard (and careful) vector differentiation, the most involved part is perhaps the Jacobians
of the thrust integrals in Eqs. (16) and (17). This Appendix provides the key equations that
are very useful in computing analytically these Jacobians. See Ref.5 for some similar results.
Consider the thrust integrals in an interval [τ1, τ2]:

Ic(τ2, τ1) =

∫ τ2

τ1

1pV
(ζ) cos(ωζ)AT (ζ)dζ ∈ R3 (7)

Is(τ2, τ1) =

∫ τ2

τ1

1pV
(ζ) sin(ωζ)AT (ζ)dζ ∈ R3 (8)

Let λ1 = col(pV (τ1),−pr(τ1)/ω) be the initial costate vector in this interval, and h a step
size parameter as follows

h =
τ2 − τ1
N

where N = 2 for using the Simpson’s rule to compute the above integrals and N = 4 for the
Milne’s rule. Define the following matrices for i = 0, 1, . . . , N in R3×6

Λ(ih) =

[
cos(iωh)I3×3 sin(iωh)I3×3

]
(9)

K(τ1 + ih) =
1

‖pV (τ1 + ih)‖
[
I3×3 − 1pV

(τ1 + ih)1T
pV

(τ1 + ih)

]
Λ(ih) (10)

Through the thrust direction 1pV
(τ) = pV (τ)/‖pV (τ)‖, both Ic and Is are functions of λ1.

When these integrals are evaluated by a numerical quadrature method, it can be shown that
the Jacobians of Ic and Is with respect to λ1 are given by

∂Ic(τ2, τ1)

∂λ1

=
(τ2 − τ1)

ns

N∑
i=0

biAT (τ1 + ih) cos(τ1 + iωh)K(τ1 + ih) (11)

∂Is(τ2, τ1)

∂λ1
=

(τ2 − τ1)

ns

N∑
i=0

biAT (τ1 + ih) sin(τ1 + iωh)K(τ1 + ih) (12)

where, for the Milne’s rule, we have

N = 4, ns = 90, b0 = 7, b1 = 32, b2 = 12, b3 = 32, b4 = 7

and for the Simpson’s rule

N = 2, ns = 6, b0 = 1, b1 = 4, b2 = 1
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Appendix C

Fixed-Point Approach for Endo-Atmospheric TPBVP

The Fixed-Point Problem

In Section 10, a special form of two-point-boundary-value problem (TPBVP) needs to
be solved for optimal endo-atmospheric ascent. Define the state vector x = col(r V ) and
costate vector p = col(pr pV ). Once the the controls 1b (and 1n) in right-hand sides of the
state Eqs. (10), and costate Eqs. (22)–(23) are eliminated by the optimality conditions as
functions of x and p, the state and costate equations become homogeneous. The initial state
x0 is given. Suppose that the burn out of the first stage of the launch vehicle occurs at time
τ1. With a guessed optimal state at τ1, the exo-atmospheric algorithm solves the optimal
vacuum trajectory to the orbital insertion point and returns an optimal costate required at
τ1, denoted by p̂. Then the TPBVP for the endo-atmospheric portion must satisfy and the
special boundary condition p(τ1) = p̂ . The special TPBVP in the endo-atmospheric portion
becomes

x′ = fx(τ,x,p) (13)

x(0) = x0 (14)

p′ = fp(τ,x,p) (15)

p(τ1) = p̂(τ1) (16)

where fx and f p are the resulting right-hand sides of the state and costate equations once
the controls are eliminated.

The time interval [0, τ1] is divided into N sub-intervals of the same length h = τ1/N . Let
xi = x(ih) and pi = p(ih) be the value of the solution at the node τi = ih, i = 0, . . . , N . The
middle point between τi−1 and τi is denoted by τi−1/2 = τi − h/2. Therefore the differential
equations (13) and (15) can be approximated by central finite difference at τi−1/2:

1

h
(xi − xi−1) = fx

(
τi−1/2,

xi + xi−1

2
,
pi + pi−1

2

)
, i = 1, . . . , N (17)

1

h
(pi − pi−1) = fp

(
τi−1/2,

xi + xi−1

2
,
pi + pi−1

2

)
, i = 1, . . . , N (18)

Re-organize above equations as

xi = xi−1 + hfx

(
τi−1/2,

xi + xi−1

2
,
pi + pi−1

2

)
, i = 1, . . . , N (19)

pi−1 = pi − hf p

(
τi−1/2,

xi + xi−1

2
,
pi + pi−1

2

)
, i = N, . . . , 1 (20)

The boundary condition is:

x0 = x(0) (21)

pN = p̂(τ1) (22)
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Let us take a set of initial guess on xi(i = 0, 1, . . . , N) and denote it as xi
(0)(i =

0, 1, . . . , N), where x
(0)
0 = x0 as required by the condition (21). Let pi

(0)(i = 0, 1, . . . , N) be
the corresponding set of costate vectors that satisfy the co-state finite-difference equations
Eq. (20). By the given boundary condition (22) we must have p

(0
N = p̂(τ1). With this known

condition and xi replaced by xi
(0), Eq. (20) for i = N becomes a fixed-point equation on

p
(0)
N−1:

p
(0)
N−1 = ηN−1(p

(0)
N−1) (23)

where ηN−1(p
(0)
N−1) is the right hand side of Eq. (20) with i = N − 1. Once the solution of

p
(0)
N−1 is obtained, p

(0)
N−2 can be found in a similar way by a fixed-point equation in p

(0)
N−2.

Repeating this process successively, we can conclude that after taking a set of initial guess
on xi(i = 1, . . . , N), the costate p

(0)
i at the i-the node can be determined by a fixed-point

equation:
p

(0)
i = ηi(p

(0)
i ), i = N − 1, . . . , 0 (24)

The above process is used to find the solution for each p
(0)
i , i = 1, . . . , N − 1. Now denote

the solution of the state finite-difference equation (19) by xi
(1)(i = 0, 1, . . . , N) with pi in

Eq. (19) replaced by the just found pi
(0), where and note that x

(1)
0 = x0 again as required.

In a similar fashion Eq. (19) for i = 1 becomes a fixed-point equation on x
(1)
1 :

x
(1)
1 = ζ1(x

(1)
1 ) (25)

where ζ1(x
(1)
1 ) is the right hand side of Eq. (19) at i = 1.

After the solution of x
(1)
1 is obtained, the fixed-point equation for x

(1)
2 is formed in the

same way. Repeating this process successively, the state x
(1)
i at ith node can be obtained by

a fixed-point equation:
x

(1)
i = ζi(x

(1)
i ), i = 1, . . . , N (26)

Now we compare xi
(1) with the initial guess xi

(0)(i = 1, . . . , N). If they are sufficiently
close to each other, stop and an endo-atmospheric ascent trajectory satisfying the finite-
difference equation system Eqs. (19–22) has been found. Otherwise using the newly obtained
xi

(1)(i = 1, . . . , N) to replace xi
(1)(i = 1, . . . , N) in Eq. (20), we will repeat the procedure to

find pi
(2)(i = 0, 1, . . . , N). Therefore there is a total of three fixed-point iterations used for

solving the formulated TPBVP: two inner-loop fixed-point iterations described in Eqs. (24)
and (26) above, and one outer-loop fixed-point iteration that determines the junction point
τ1 between the endo- and exo-atmospheric portion of the complete ascent trajectory.

Described above is a brief review of the fixed-point formulation for solving the special
form of TPBVP in endo-atmospheric ascent portion. The convergence of the fixed-point
iterations is still an open question. In the following some additional ideas are discussed to
facilitate the convergence of the fixed-point iterations.

Contraction Mapping

There are totally three fixed-point iterations in the presented algorithm. To avoid possible
confusion and for convenience of expression, a general fixed-point iteration expression will
be used in discussion in this section.
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Consider a fixed-point equation
z = f(z) (27)

The fixed-point iteration applied to this equation is:

ẑ(j+1) = f(z(j)), j = 0, 1, 2, . . . (28)

where
z(j) = ẑ(j), j = 1, 2, . . . (29)

The convergence of this iteration depends on whether the mapping on the right hand of
Eq. (27) is a contractive. For a fixed-point iteration, it is possible to facilitate the convergence
of the iteration through redefining the fixed-point iteration with an appropriate coefficient θ
in the following modified equation (cf. Isaacson et al 1994).

z(j+1) = θẑ(j+1) + (1 − θ)z(j), j = 0, 1, 2, . . . (30)

With Eq. (28) and Eq. (30), we have just defined a new fixed-point equation:

z = F (z) := θf(z) + (1 − θ)z (31)

Evidently the solutions to Eq. (31) and Eq. (27) are the same for any θ �= 0. The
difference is that in the cases where fixed-point iteration (27) does not converge, we may
be able to find a proper θ to enable the convergence of the fixed-point iteration (34). In
other words, we are trying to formulate a contraction mapping z = F (z) instead of solving
the fixed-point iteration (27) directly. It should be mentioned that θ can be either a scalar
or a matrix. See Ref.37 for more. Reference38 proposes and compares several numerical
techniques toward the solution of the above special TPBVP.
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